国产三级视频_久久青草视频_国产激情对白_久久私人影院_色老板最新地址_打白嫩光屁屁女网站_久久国产热_免费午夜在线视频_99视频国产精品免费观看a_靠逼动漫_亚洲男人精品_免费版在线观看

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當(dāng)前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

国产综合视频一区| 亚洲一区二区三区在线看| av色小说| 中文字幕天堂网| 日本国产在线观看| 久久精品综合视频| 色吧视频| 久久久视| 男男高h视频| 四川一级毛毛片| 中日韩免费毛片| 羞羞草视频| 深爱综合网| 日本一二三区视频在线| 嫩草研究院在线观看| 91偷拍富婆spa盗摄在线| 欧美一二三| 欧美黄色片网站| 久久久欧美精品sm网站| 国产精品区一区| av一区二区三区四区| 欧美一区二| 午夜精品在线观看| 99久久婷婷国产| 日本女人毛片| 操白虎逼| 久色99| 国产一区二区三区免费| 9999精品视频| 91丨九色丨丰满| 成人宗合| 亚洲天天操| av在线影音| 台湾av在线| 成人7777| 蜜桃成人在线视频| 五月中文字幕| 嫩草影院懂你的| 丰满熟女人妻一区二区三区| 国产在线精品播放| 欧美猛男gaygay| 涩涩网址| 欧美xxxx黑人又粗又长精品| 超碰国产91| 在线毛片网| 九九爱国产| 97在线公开视频| 国产精品9191| 九九热99久久久国产盗摄| 黄色特级网站| 精品一区二区在线视频| 欧美36p| 国产91在| 欧美激情综合在线| 一区二区三区精品| 欧美成人精品欧美一| 日本人妻换人妻毛片| 国产第一草草影院| 少妇诱惑av| www.污在线观看| 国产另类xxxxhd高清| 久久久免费av| 日韩精品麻豆| 国产无套精品一区二区| 丁香导航| 欧美日韩高清| 黄色片网站视频| 欧美人与动牲交a欧美精品| 四虎视频在线观看| 国产愉拍| 桃花久久| 一本色道久久综合亚洲精品酒店 | 日韩社区| 最好看的2019免费观看| 爆乳熟妇一区二区三区霸乳| 成人毛毛片| 欧美大喷水吹潮合集在线观看| 新91网站| 青草综合网| 丰满少妇在线观看bd| 国产精品无码99re| 777毛片| 五月婷婷综合激情| 国产xxxx孕妇| 99久久精品免费看国产| 日本a v在线视频| 很狠撸| 欧美骚少妇| 欧美日韩国产在线一区| 叼嘿视频在线免费观看| 一路向西在线看| 菠萝蜜av| 朝桐光在线播放| 一本大道伊人av久久综合| 未满十八岁勿进| 91精品国产乱| 亚洲国产精品成人天堂| 人妖系列| 日韩欧美精品在线视频| 7777精品视频| 97国产超碰| 欧美aⅴ99久久黑人专区| 日本一区二区观看| 精品久久久久久久久久久久久久久久 | 日本国产在线观看| www.久久久久| 大香依人| 被黑人啪到哭的番号922在线| 国产最新毛片| 性欧美69| 亚洲伦理在线播放| 亚洲精品在| 欧美日韩中文视频| 久久久久久久美女| 性欧美最猛| 天堂av资源在线观看| 性欧美lx╳lx╳| 精品自拍av| www.五月激情| 免费高清毛片| 99色婷婷| 深夜天堂| 亚洲国产成人精品久久| 五月天 丁香| 69**夜色精品国产69乱| 激情九月天| 国产 日韩 欧美 成人| 老师让我她我爽了好久视频| 伊人免费在线| 人人爱人人爽| 蜜臀999| 污污网站免费在线观看| 亚洲性视频网站| 一级真人毛片| 日韩激情小说| 一区二区三区视频免费看| 德国性经典xxxx性hd| 久久综合国产| 婷婷中文网| 美女视频一区| 欧州一级片| 亚洲精品动漫在线观看| 成人啪啪| 四虎永久免费观看| 色欲AV无码精品一区二区久久| 精品美女| 香蕉久久夜色精品国产使用方法| 性做久久久久久免费观看欧美| 免费观看黄色网| 精品久热| 色豆豆| 五月婷网站| 777久久久| 色婷婷精品国产一区二区三区| 秋霞福利| 国产99久| 日本色视频| 九月婷婷丁香| 99久久久无码国产精品6| 成人美女视频在线观看| 啪啪中文字幕| 95国产精品| 蜜桃免费视频| 老鸭窝av在线| 2018日日夜夜操| 亚洲激情黄色| 欧美亚洲影院| av成人国产| 国产第一页在线视频| 中文精品在线| 黄色片网站大全| 精品一区二区三区四区五区| 一级片特黄| 亚洲九色| 能免费看黄色的网站| 女同性做爰三级| 人妖一区二区三区| 免费av小说| 日韩精品中文字幕一区二区三区| 午夜精品久久久久久久99| 日韩精品午夜视频| 久久久久久伊人| 91免费观看入口| 国产最新av| 久久久91| 亚洲a一级| 亚洲图区在线| 国偷自产av一区二区三区| 91网站视频在线观看| 亚洲另类欧美日韩| 精品人妻久久久久久888不卡| 天天燥日日燥| 欧美多人| 少妇人妻一区二区三区| 伊人婷婷色| 白丝少妇| 绿巨人在线观看免费观看在线nba动漫 | 91久久久久久久久久| 欧美一区亚洲| 超碰国产91| 色老女人| 亚洲午夜精品一区,二区,三区 | 国产浮力影院| 小说乱视频| 欧美成人精品一区二区男人小说| 日韩精品麻豆| 日日操夜夜摸| 国产xxxx孕妇| 国产在线国偷精品产拍| 精品一区二区三区入口| 日韩av在线播放网址| 国产精品免费无码| 伊人手机在线| 18性xxxxx性猛交| 欧美在线不卡视频| 五月婷婷视频| 精品一区久久| 91超碰在线免费观看| 国产午夜精品无码一区二区| 96国产在线| 午夜一级电影| 奴色虐av一区二区三区| 麻豆精品国产传媒mv男同| 夜夜添无码一区二区三区| 国产成人av在线| av电影在线观看不卡| 强乱中文字幕| 欧美a级一区二区| 亚洲啊啊| 91日韩欧美| 国产精品视频你懂的| 青草视频网| av在线播放免费| 亚洲伦理在线播放| 99热伊人| 日韩不卡一区二区三区| 日本午夜精华| 欧美粗暴jizz性欧美20| 中文字幕网站在线观看| 毛片在线免费观看网址| 电家庭影院午夜| 在线免费观看中文字幕| 日韩在线视频网站| 一级a性色生活片久久毛片| 亚洲精品tv| 亚洲妇熟xx妇色黄蜜桃| 天堂8在线天堂资源bt| 天天插天天狠天天透| 亚洲日本天堂| 欧美多p| 蜜桃av久久久亚洲精品| 钻石午夜影院| 欧美日韩小说| 人成在线视频| 亚洲精品xxx| 久草久草视频| 野花视频在线免费观看| 特黄特色大片免费视频大全| 日本激情网| 日韩欧美在线观看| 黄色一级毛片| 国产精品久久中文字幕| 91视频色| 999福利视频| 在线看b| www.精品视频| 精品欧美一区二区三区在线观看| 亚洲综合插| 在线免费一级片| 国产精品jizz在线观看老狼| 天天天天射| 午夜精品久久久久久不卡8050| 天天草天天干| 亚洲伊人久久综合| 91网在线观看| 爱爱视频网| 干美女av| 美女被c爽| 人物动物互动39集免费观看| 黄色网www| 丝袜少妇av| 欧美一区亚洲| 一本大道伊人av久久综合| 欧美精品一区二区在线播放| 天天人人| 亚洲色图二区| 男人插女人网站| 亚洲素人av| 美梦视频大全在线观看高清| 国产成人精品在线观看| 亚洲情侣在线| 国产精品久久久久国产a级| 91免费版黄| 一区二区三区视频免费看| 性的免费视频| 亚洲一区中文在线| 中文字幕22页| 国产成人在线视频| 免费美女视频| 天天草天天干| av免费毛片| 欧美 中文字幕| 中文字幕一区在线观看| 日本系列第一页| 1024国产视频| 日韩精品免费视频| 得得的爱在线视频| 日本在线一区二区| 高h放荡受浪受bl| 天堂在线国产| 日本少妇xxxx动漫| 青青青草国产| 久久无码高潮喷水| 国产亚洲精品美女久久久| 欧美激情视频二区| 国产男男gay网站| 久久中文网| 91精品福利在线| 国产精品自拍在线观看| 亚洲香蕉久久| av中文字幕一区二区| 一起操在线观看| 92精品视频| 中文字幕15页| 欧亚一区二区| www.久久精品视频| 亚洲高清在线观看视频| 羞耻调教憋尿(高h,1v1)| 无码人妻丰满熟妇奶水区码| 午夜激情欧美| 亲子乱一区二区三区| 国产 第1190页| 欧美伊人影院| 久久密| 无遮挡aaaaa大片免费看| 国产香蕉视频| 亚色在线视频| 午夜高潮视频| 美女黄色一级视频| 熟女毛毛多熟妇人妻aⅴ在线毛片| 在线观看中文字幕亚洲| 毛片无码免费无码播放| 日韩爱爱免费视频| 欧美激情国产精品日韩| 成人一区二区三区四区| 欧美亚洲影院| 午夜无遮挡| 中文字幕av日韩精品| 亚洲av成人精品毛片| 69视频网站| 黄色观看网站| 少妇一级淫片日本| 男女交性视频| 久久成人精品一区二区| 人人妻人人爽人人澡人人精品| 日韩一级久久| 午夜剧场免费看| 91精品国产乱| 污视频在线播放| 天天舔天天舔| 久久久99久久| 欧美精品国产一区二区| 日本精品免费一区二区三区| 日韩黄色免费电影| 99色婷婷| 国产综合精品一区| 免费视频成人| 日本一二三不卡视频| 午夜剧场免费观看| www黄色| 国产一区二区欧美| 91久久久久久久久久| 久草青青草| 日韩欧美精品在线视频| 绝母1第6集免费观看动漫 | 噜噜色成人| 麻豆中文字幕| 欧美xxxx免费虐| 波多野结衣中文字幕在线播放| 性做爰裸体按摩视频| 国产一区二区在线播放视频| 黄色一级录像片| 黄色特级网站| 国产资源站| 在线免费观看一区二区| 天天综合在线视频| 狠狠操人人干| 国产情侣一区| 91看黄软件| 深夜国产福利| 激情图片av| 亚洲激情一区| 插入综合网| 国产女厕一区二区三区在线视| 国产日韩电影| 成年人性生活免费视频| 亚洲精品888| 色就色综合| 超喷在线| 中文字幕国产第一页| 亚洲国产av一区| 欧美高清在线播放| 成人宗合| 黑人极品ⅴideos精品欧美棵| 性渴老太作爱| 国产九色av| 免费av网站| 色综合2| 国产精品一区二区免费在线观看| 欧美在线视频免费| 在线观看亚洲一区二区| 九九视频在线| 在线免费观看国产视频| 日韩免费成人网| 国产成人精品影视| 免费播放片大片| 国产精品久久久91| 欧洲亚洲天堂| 一级免费在线观看| 污视频大全| 精品人妻少妇一区二区| 亚洲啊啊| av片不卡| 亚洲天堂视频在线| 欧美日韩高清| 中国一级大黄大黄大色毛片| 大j8福利视频导航| 国产色中色| 黄色免费在线视频| 亚洲成人av综合| 日本激情网| 曰本黄色大片| 椎名由奈av一区二区三区| 亚洲大片在线| 亚洲高清视频在线| 欧美激情亚洲色图| 亚洲免费一二三区| 天天干夜夜玩| 97久色| 欧美囗交做爰视频| 色老女人| 三级做爰在线观看视频| 男女爽爽爽| 伊人精品久久| 香蕉久久夜色精品国产使用方法| 大j8福利视频导航| 国产性hd| 香蕉国产精品视频| 插入综合网| 久久久久看片| 3d动漫精品一区二区三区| 中文字幕在线观看免费| tube日本69第一次| 天天干天天玩| 精品欧美久久| 777毛片| 曰本黄色大片| 免费在线观看av网址| 亚洲激情黄色| h小视频| 香蕉国产精品视频| 黄视频在线免费| 日本一区二区视频| 一级淫片a| 日本极品少妇| 亚洲第一第二区| 老司机午夜激情| 农村妇女愉情三级| 国产在线视频卡一卡二| 国产99页| 日韩另类视频| 爱福利视频网| 日韩一级黄| 91视色| 综合精品一区| 色小妹综合| 91亚洲精品在线| 亚洲性天堂| 午夜剧场免费观看| 欧美人体视频一区二区三区| 国产精品久久久av| 懂色av.com| 777久久久| 中文字幕av久久| 日本一区二区观看| 97热视频| 午夜国产小视频| 亚洲大片在线| 污网站免费| 噜噜噜色| 99性趣网| 黄色一级毛片| 中文字幕欲求不满| 国产日本欧美一区二区三区| 国产一区二区电影| 国产黑丝视频| 天天舔天天舔| 日韩免费观看一区二区| 1区2区3区视频| 老司机色视频| 国产日本精品视频| 极品撕开美女衣服| 日韩欧美理论| 亚洲dvd| 一级黄色大片在线观看| 69色视频| 91夫妻视频| 久久久久99精品成人片三人毛片| 成人听书哪个软件好| www天堂在线| 99久久久精品免费观看国产| 秋霞福利| 91正在播放| 日本免费电影一区二区三区| 午夜国产精品视频| 国产精品色在线网站| 日韩国产在线| 久久久欧美精品sm网站| 亚洲香蕉久久| 两个人看的www视频免费完整版| 三级福利片| av成人黄色| 国产视频资源在线观看| 美女一线天| av免费影院| 亚洲精品美女视频| 国产系列精品av| 中文字幕在线观看| 免费看a的网站| 插入综合网| 能免费看黄色的网站| 国产做爰xxxⅹ久久久精华液| 99福利在线| 图片区亚洲色图| 国产色中色| 国产成人av在线| 特级西西444www高清大胆| 92av视频| 欧美三级午夜理伦| 天天草天天干| 爆乳熟妇一区二区三区霸乳| 香蕉狠狠爱视频| 成年人视屏| 99色婷婷| 中文字幕无码乱码人妻日韩精品| a v视频在线播放| 福利av在线| 亚洲骚片| 亚洲高清影院| 免费观看a级片| 黄色大片免费观看视频| 日本午夜在线视频| 97久色| 大j8福利视频导航| 国产99视频在线观看| 性av网站| 国产精品9191| 男生女生一起搞鸡| 色哟哟网站在线观看| 日韩中文在线播放| 粉嫩小泬无遮挡久久久久久| 色网网址| 人成在线视频| 国产精品99精品无码视| 91精品综合久久| 成人国产精品久久| 少妇做爰www| 九色精品视频| 99av视频| 浴室里强摁做开腿呻吟男男| 亚洲国产精品人人爽夜夜爽| 日韩久久久久久| 欧洲精品一区二区三区| 91黄免费| 美女污污网站| 久久久人人人| 奇米二区| 午夜无遮挡| 亚洲午夜av电影| 91蜜臀| 色哟哟导航| 国产精品视频看看| 狠狠的操| 国产不卡在线播放| 窝窝在线视频| 私人影院毛片| 韩国伦理大全| 欧美人妖网站| 色欲欲www成人网站| 亚洲午夜电影在线观看| 亚洲天堂伊人网| 午夜操一操| 欧美aⅴ99久久黑人专区| 国产免费91视频| av片大全| 欧州一级片| 国产黄色免费大片| 91.色| www亚洲成人| 手机在线观看国产精品| 生活片一级片| 精品人妻少妇一区二区| 一本久久久久| 69影院少妇在线观看| 人人人爽| 久久成人综合网| 黄页免费网站| 成人毛片视频网站| 日本一区二区不卡在线| 丰满少妇被猛烈进入高清播放| 澳门黄色网| 久草热在线观看| 狠狠的操| 日本午夜在线视频| 欧美国产日韩精品| 国产一在线| 午夜精品在线观看| 亚洲天堂视频在线| 国产 欧美 日韩| 天天综合在线视频| 亚洲经典在线视频| 超碰在线免费公开| 国产精品超碰| 一起草最新网址| 久久久精品视| 欧美高清在线播放| 中文字幕av日韩精品| 亚洲免费不卡| 青青草久草| 国产99久| 色花av| 亚洲免费成人av| 开心色婷婷| 三级三级久久三级久久18| 国产免费一区| 久久久久逼| 色版视频| 久久人人插| 国产精品超碰| 日韩精品第1页| 欧美日韩另类综合| 成人av毛片| 久久理伦| 久久久久久亚洲中文字幕无码| 黄色录像二级片| 日韩黄色影院| 亚洲啪av永久无码精品放毛片| 激情视频亚洲| 欧美午夜久久久| 3d动漫精品啪啪一区二区竹菊| 午夜视频欧美| 福利资源导航| 免费黄色激情视频| 欧美激情网| 国产精品视频第一页| 日韩欧美有码| 免费在线观看成人| 窝窝在线视频| 亚洲免费大全| 欧美日韩在线观看一区二区三区| 久久久精品久| 天堂av资源在线观看| 毛片免费播放| 日韩视频在线观看视频| 777久久久| 亚洲影视一区二区| 韩国国产在线| 好男人在线视频| 中文在线а√在线| 亚洲2022国产成人精品无码区| 黄色三级三级三级三级| 亚洲宅男天堂| 理论片毛片| 97精品国产97久久久久久春色| 国产高清露脸| 久久黄网站| 国产看片在线| 裸体免费| 在线观看欧美日韩视频| 中文字幕3区| 97国产超碰| 国产成人av无码精品| 性日本xxx| 亚洲国产精品成人天堂| 五月天一区二区| 国产粉嫩白浆| 91网站视频在线观看| 国产亚洲精品一区二区三区| 中文字幕av久久| 午夜精品福利一区二区蜜股av| 性做爰裸体按摩视频| 国产一级久久久| 国产视频精品在线| 国产福利电影一区二区三区| 黄一区二区三区| 久久这里只有精品国产| 农村老熟妇乱子伦视频| 国产一级久久| 男女性杂交内射妇女bbwxz| 美女黄色一级视频| 精品欧美一区二区三区在线观看| 国产羞羞| 成人手机av| 我的丝袜美腿尤物麻麻| 日日躁夜夜躁| 国产精品大全| 日韩av高清免费| 一区二区乱子伦在线播放| 黄色大片在线播放| 日本极品少妇| 欧美人与动物xxx| 国产乡下妇女三片| 午夜窝窝| 亚洲午夜电影在线观看| 成人三级黄色片| 中文字幕欲求不满| 一级全黄少妇性色生活片| 91一区二区三区| 日韩欧美一二三| 欧美大片免费播放器| 超碰在线影院| 古代玷污糟蹋np高辣h文| 天天舔天天舔| 日韩伦理大全| 中文字幕 自拍偷拍| 亚洲天堂视频在线| 亚洲av无码成人精品区| 爆乳熟妇一区二区三区霸乳| 国产美女精品| 亚洲欧美精选| 亚洲色图 校园春色| 精品91av| 羞耻调教憋尿(高h,1v1)| 后进极品美女圆润翘臀| 久久国产精品亚洲| 91网入口| 黄色视屏在线播放| 国产色影院| 好吊色av| 草莓视频黄在线观看| 国产精品13p| 欧美九九视频| av一区二区三区四区| 韩国伦理大全| 免费在线观看成人| 少妇一级淫免费放| 自拍偷拍网| 久久久亚洲精品无码| 亚洲午夜视频| 最美情侣视频完整版高清| 人人爱人人艹| 四虎精品在线播放| 中国丰满熟妇xxxx性| xxx性视频| 日本激情视频一区二区三区| 亚洲老头同性xxxxx| 久久精品1| 超碰成人在线观看| 天天人人综合| 精品久久蜜桃| 欧美www在线观看| 国产视频精品在线| 午夜精品福利一区二区三区蜜桃| 一级做a爰| 污污网站免费在线观看| 91手机在线视频| 欧美阿姨| 日韩avxxx| 性生活毛片| 久久96| 国产成人精品一区二三区| 超碰天堂| www天堂在线| 久草久草视频| 成人毛片大全| 四虎在线免费视频| 黄色国产网站| 天干夜天干天天天爽视频| 在线看a视频| 青青草草视频| 91av网址| 国产v片| 日本在线高清| 少妇愉情理伦片bd| 免费视频亚洲| 国产爽视频| 麻豆视频传媒| 成人一区二区三区四区| 亚洲色图首页| av观看国产| 68日本xxxxxⅹxxx22| 九九爱国产| aaaa黄色| 看动漫的软件| 免费在线看污视频| 久久免费视频99| 91在线看| 蜜臀av性久久久久蜜臀aⅴ涩爱| 欧美a级片在线观看| 狠狠操人人干| 777久久久| 中国一级黄色大片| 黄色av网| 欧美顶级metart裸体全部自慰| 麻豆传媒视频在线| 国产视频官网| 免费在线观看成人| 91在线观看下载| 国内免费av| 日韩一区不卡| 麻豆视频传媒| 欧美激情导航| 亚洲人成一区| 四虎精品在线播放| 黄色香蕉网| 午夜国产视频| 免费看色| 亚洲偷偷自拍| 成人欧美一区二区三区黑人孕妇| 激情影音| 美梦视频大全在线观看高清| 后进极品美女圆润翘臀| 久久com| 葵司qvod| 97国产资源| 肛门女人电影全集完整版在线观看| 一区二区乱子伦在线播放| 国产成人黄色| 欧美成人精品一区二区男人看| 男人日女人免费视频| 亚洲av久久久噜噜噜噜| 亚洲深夜av| 强乱中文字幕| 亚洲伊人精品酒店| 9999精品视频| 国产精品99久久久久久久久久久久| 97超碰人人爱| 久精品在线| 欧美成人高潮一二区在线看| 亚洲一区二区av电影| 黑人精品欧美一区二区蜜桃| 福利视频第一页| 日本少妇xxxx动漫| 高清二区| 国产吧在线视频| 黄色网www| 99爱视频在线| www.精品在线| 久久久精品99| 久久福利视频网| 成年人在线免费观看| 不卡av免费| 亚洲欧洲免费| 91黄免费| 婷婷色av| 中文字幕无码乱人伦| 久久久国产精品| www.av网| 中国吞精videos露脸| 中文天堂在线一区| 欧美成人精品欧美一| 少妇高潮露脸国语对白| 午夜xx| 久久色电影| 人人艹人人爽| 99国产精品自拍| 日韩人妻无码一区二区三区| 中文字幕午夜| 久久爱影视| 亚洲五级片| 欲色影音| 成人免费视频网站| 在线成人| 亚洲精品在线中文字幕| 日本激情在线播放| 欧美69久成人做爰视频| 中文字幕一区在线观看| 美女丝袜av| 男生插女生的视频| 国产91精品ai换脸| 国产成人精品视频| 免费观看全黄做爰的视频| 91精品综合久久| 国产色影院| 亚洲免费播放| 亚洲免费播放| 欧美 亚洲| 天堂资源| 天天舔天天舔| 亚洲影视精品| 欧美77777| 欧美4区| 四虎永久免费观看| 伊人涩涩| 午夜激情欧美| 中文字幕免费看| 狠狠爱五月婷婷| 精品人妻一区二区三| 大陆av片| 青青草原国产| 黄色成人免费在线| 国产99久久久国产精品免费看| 尤物av在线播放| 91一区二区三区| 就要操就要射| 91黄色仓库| 天天操狠狠干| 91传媒理伦片在线观看| 久久99精品久久久久| 中文字幕 自拍偷拍| 自拍三级| 亚洲在线观看免费视频| 香蕉成人| 中文无码熟妇人妻av在线| 野花视频在线免费观看| 欧美黄视频| 国产精品色网| 国产一区91| 欧美成人精品一区二区男人小说| 免费观看全黄做爰的视频| 欧美性xxxx极品hd满灌| 黄色片在线观看免费| 国产亚洲精久久久久久无码77777| 撸撸在线视频| 午夜一级电影| 日韩在线看片| 免费在线观看的黄色| 日本一二三区视频在线| 少妇做爰www| 亚欧高清| 免费网站黄色| 午夜一区二区三区视频| 自拍视频啪| 自拍亚洲欧美| 久久黄网站| 色哟哟视频| 18视频在线观看网站| 丰满熟妇被猛烈进入高清片| 亚洲性猛交xxxx| 91免费试看| 日本老妇高潮乱hd| 男人资源站| 含羞草一区二区三区| 伊人涩涩| 26uuu亚洲国产精品| 永久精品网站| 国产成人精品影视| 午夜看片在线观看| 天堂在线中文资源| 久草网在线视频| 正在播放超嫩在线播放| 性一交一乱一伧国产女士spa| 人人超碰在线| 亚洲成人91| 国产精品久久久久久免费| 黄色大片在线播放| 91偷拍精品一区二区三区| 7777精品视频| 91插插插视频| 免费在线看污视频| 性色av免费观看| 亚洲av男人的天堂在线观看 | 日韩一区二区免费视频| 麻豆精产国品| 日本va欧美va国产激情| 亚洲第一成网站| 麻豆导航| 婷婷中文字幕在线| 精品九九久久| 欧美精品系列| 国产乱xxⅹxx国语对白| 久久96| 蜜桃视频网| 一级片免费网址| 日本一区二区三区视频在线观看| 亚洲精品中文在线观看| a级片在线观看| 欧美一区亚洲二区| 裸尼姑熟蜜桃| 西西人体44| 五月婷婷综合在线观看| 天天碰天天| 亚洲一区三区| 男人深夜影院| 天天躁日日躁狠狠躁欧美| 国产无套精品一区二区| 91偷拍富婆spa盗摄在线| 午夜一区二区三区免费| 成人自拍视频在线观看| 国产精品久久久久久久久久免费看| 日本娇小侵犯hd| 一区在线观看视频| 福利资源导航| 国产91黄色| 巨乳美女被爆操| 久久久一| 中文字幕人妻精品一区| 亚洲人免费视频| 黄色在线视频网址| 欧美激情在线一区二区| 亚洲一级色| 亚洲你我色| 久热这里只有精品在线| 午夜特级毛片| 17c在线| 奴色虐av一区二区三区| 欧美精选一区二区| 久久96| 一区二区国产在线| 生活片一级片| 久久久欧美精品| 东京av在线| 熟女毛毛多熟妇人妻aⅴ在线毛片| 澳门久久| a级片免费网站| 依依激情网| 啪啪网站大全| 国产福利91精品| 荔枝视频污| 青青草视频偷拍| 亚洲欧美日韩久久| 亚洲一区人妻| 久久精品1| 亚洲综合首页| 蜜桃av在线| 久久久亚洲精品无码| 性欧美69| 日韩日韩日韩日韩日韩| 日本福利社| √8天堂资源地址中文在线| 国产羞羞| 亚洲午夜久久| 最新国产露脸在线观看| 日本黄色一级视频| 久久久久久久| 中国黄色网页| 日本aa大片| 欧美又大又粗又长| 在线观看成人av| 午夜一区二区三区视频| 福利三区| 国产精品国产三级国产Av车上的| 欧美999| 极品白嫩少妇无套内谢| sm久久捆绑调教精品一区| 欧美乱淫| 中文字幕在线观看日韩| av日韩中文| 2018日日夜夜操| 欧美成在线观看| 亚洲高清在线观看视频| 国产精品视频免费在线| 涩涩视频免费看| 新超碰在线| 亚洲图区在线| 国产精品美女在线观看| 第一章激情艳妇| 伊人手机在线视频| 欧美比基尼| 久久神马影院| 日韩国产亚洲欧美| 国产视频一二三区| 澳门久久| 日本在线免费播放| 欧美一级淫| 国产精品av网站| 中文字幕国产亚洲| www亚洲| 91在线精品入口| 久久色电影| www.黄色av| 人人爱人人爽| 欧美36p| 人人超碰在线| 尤物天堂| 白石茉莉奈黑人| ,一级淫片a看免费| 亚洲大片在线| 欧美日韩三级视频| 欧美综合在线观看| 国产成人免费看一级大黄| 中文字幕15页| 免费视频成人| 男女啪啪资源| 色综合视频| 日韩精品一区二区三区视频| 麻豆高清| 黄色在线观看免费视频| 日韩欧美猛交xxxxx无码| 国产98在线| 黄色三级免费观看| 国产精品13p| 18岁禁网站| 东京av在线| 国产精品极品白嫩在线| 超碰美女在线| 六月丁香婷婷综合| 亚洲一区二区av电影| 国产精品日韩电影| 国产午夜福利100集发布| 欧美亚洲成人精品| 精品一区二区三区四区五区六区| 亚色在线视频| 国产一区啪啪| 欧美午夜精品久久久久久孕妇| 夜夜添无码一区二区三区| 噜噜色图| 国产欧美日韩一区二区三区四区| 日韩高清av电影| 欧美性猛交xxxx| 国产精品911| 国产二区视频| 久久国产精品99久久人人澡| 爱福利视频网| 亚洲伊人精品酒店| 少妇毛片一区二区三区| 日本在线一区二区| 天天天色综合| 一级淫片a| 三级av片| 日本成人三级| 伊人手机在线视频| 中文字幕码精品视频网站| 少妇愉情理伦片bd| 国产一区二区三区精品视频| 性视频免费| 国产91精品久久久久久久| 欧美久久99| 好吊妞视频一区二区三区| 日韩精品一区二区三区视频| 爱福利视频网| 日韩欧美理论| 国产一在线| 成人免费视频网址| 国产草草视频| 一本大道伊人av久久综合| 色播视频在线| 东京热av一区| 国产又粗又猛又黄视频| 国产福利91精品| 日韩精品麻豆| 日本三级2019| 中文字幕第88页| 极品白嫩少妇无套内谢| 17c国产精品| 啪啪干| 中文字幕韩日| 人妻精油按摩bd高清中文字幕| 91久色| 国产精品视频麻豆| 日韩欧美天堂| 久久久人人人| 欧美青青草| 骑骑上司妻电影| 简单av在线| 中文字幕一区2区3区| 欧美人与动物zozo| 第一福利网址导航| 中文字幕在线播放视频| 黄色午夜| 熟妇高潮一区二区| 亚洲天堂伊人网| 亚洲综合色在线观看| 亚洲黄色区| 免费色黄视频| 佐山爱在线视频| 青青草久久伊人| 亚洲一区二区自拍| 欧美做爰啪啪xxxⅹ性| 蜜桃91精品入口| 九九热99久久久国产盗摄| 黄色特级网站| 超碰在线影院| 性网爆门事件集合av| 2020国产在线| 最新视频 - 8mav| 亚洲精品.www| 国产精品乱码一区二三区小蝌蚪| 欧美嫩草| 澳门黄色网| 亚洲超碰在线| 视频成人免费| 日韩欧美一二三| 六月丁香婷婷综合| 美女扒开尿口来摸| 爱的色放 韩国| 免费级毛片| 一区在线观看视频| 禁漫天堂在线| 天天色综合色| 欧美精品一区二区在线播放| 久久久久国产免费| 久久黄网站| 亚洲福利小视频| 国产丝袜视频在线| 久久久在线| 免费av网站在线播放| 国产美女91呻吟求| 日韩激情床戏| 爱爱福利社| 亚洲看片网站| 日韩色一区| 欧美顶级metart裸体全部自慰| 色眯眯影视| 精品视频一区二区三区| 色眯眯影院| 91色资源| 黄色一级毛片| www.久久久久| 新91网站| 欧美a级片在线观看| 插插影视| 中文福利在线| 天天碰天天| 国产v综合v亚洲欧美久久| 日本不卡视频在线播放| www.天天操.com| av女人的天堂| 国产最新av| 国产v日产∨综合v精品视频| 韩国色网| 毛片9| 国产羞羞| 国产成人午夜视频| av成人国产| 桃色91| 日韩精品 在线视频| 青娱乐国产在线| 亚洲三级精品| 婷婷一区二区三区四区| 美女bb视频| 强行侵犯视频在线观看| 久久久久久久国产精品毛片| h网站在线免费观看| 不卡视频一区二区三区| 亚欧高清| 天天天色综合| 日韩久久久久久| 婷婷精品进入| 九色亚洲| 99涩涩| 免费看成人片| www亚洲成人| √8天堂资源地址中文在线| 热99| 免费看一区二区三区| 亚洲无码久久久久| 亚洲你懂的| 国产精品免费福利| 成人动漫影音先锋| 人妻久久一区二区三区| 99国产精品久久久久久久久久久| 国产成人在线视频| 欧美三级午夜理伦| 久久这里只有精品8| 亚洲乱码精品久久久久| 欧美精品一区二区在线播放| 熟妇人妻一区二区三区四区| 荔枝视频污| www黄色在线观看| 色97色| 在线观看污污网站| 久久99精品久久久久| 成人一区二区三区四区| 国产97在线 | 亚洲| 色涩综合| 成人动漫在线观看| 天天操天天干视频| 91精品国产乱| 国产乱人乱偷精品视频a人人澡| 欧美视频久久| 亚洲深夜av| 亚洲av男人的天堂在线观看| 成人一区二区三区视频| 免费国产黄色网址| 亚洲狼人天堂| 精品一区二区三区四区五区| 国产男女精品| 一本色道久久综合亚洲精品酒店| 国产绿帽一区二区三区| 欧美精品1区2区3区| 国产精品xxx| 人妖一区二区三区| 3d动漫精品h区xxxxx区| av女人的天堂| 亚色视频在线| 亚洲2022国产成人精品无码区| 日韩精品久| 艳妇乳肉豪妇荡乳av| 亚洲激情专区| ,一级淫片a看免费| 久章草影院| 一边搓奶一边摸下面太爽了| 国产视频资源在线观看| 黄色片网战| 91精品在线看| 每日更新av| 中文字幕自拍| 99re热在线视频| 免费看污视频的网站| 成人免费视频网址| 中文字幕韩日| 亚洲一级色| 亚洲激情专区| 国产区亚洲区| 丰满孕妇性春猛交xx大陆| 开心激情av| 91草莓| 福利免费观看| 91在线观看免费高清| 99爱视频在线| 国产精品色在线网站| hitomi超乳田中瞳在线播放| 国产日本免费| www亚洲| 在线国产中文字幕| 性生活毛片| 少妇愉情理伦片bd| 欧美jizzhd精品欧美18| 国产精品午夜福利| av丝袜在线| 国产999视频| av在线片| 亚洲制服一区| 国产福利电影一区二区三区| 亚洲精品码| 国产精品无码白浆高潮| 亚洲激情黄色| 亚洲综合首页| www.久久精品视频| 自拍偷拍精品视频| 美女考逼| 在线a免费| 亚洲网站av| 粉嫩一区| 亚洲性生活视频| 巨乳美女被爆操| 中文字幕无码乱码人妻日韩精品| 中文字幕麻豆| 日本免费电影一区二区三区| 人妖一区二区三区| 日韩日韩日韩日韩日韩| 人人超碰在线| 黄av在线| 久久国产精品久久| www.亚洲综合| 国产精品99久久免费黑人人妻| 亚洲天堂精品视频| 正在播放超嫩在线播放| www九色| 久久一精品| 被黑人啪到哭的番号922在线| 久久久久久久| 99色婷婷| 欧美人妖网站| 国产二区视频| 欧美在线精品一区二区三区| 国产精品永久免费观看| 亚洲天堂成人av| 青青草久久伊人| 午夜久久久精品| 自拍视频在线| 99爱视频在线| 国产尤物在线| 国产极品探花| 中文字幕视频二区| 狠狠2018| 我要色综合天天| 国产特级片| 久久久在线| 久操色| 健身教练巨大粗爽gay视频| 国产乱一区二区三区| 深爱激情久久| 少妇视频一区| 亚洲免费观看高清完整版在线观看| 日韩有码中文字幕在线| 欧美 中文字幕| 久久久久久久极品| 国产一级片免费视频| 狠狠操狠狠插| 日本在线观看免费| 一区二区视频免费在线观看| 色综合中文字幕| 在线a免费| 一区二区片| 欧美视频在线不卡| 精品三级国产| 亚洲欧美精选| 91视频影院| 国产精品二区视频| 久久盗摄| 日韩另类视频| 亚洲精品888| 男性裸体全身精光gay| 精品久久久久久久久久久久久久久久| 久热这里只有精品在线| 日本三级视频在线播放| 成年人在线免费观看| 成人av免费看| 69视频网| 91福利影院| 久久综合91| 天天操天天插天天射| 日韩一二区| 精品久久久久久亚洲精品| 亚洲 国产 欧美 日韩| 菠萝蜜av| 91视色| 亚洲性猛交xxxx| 免费看日批视频| 亚洲天天操| 农村妇女愉情三级| 永久免费成人代码| 欧美视频在线不卡| 菠萝蜜av| 狐狸视频污| 中国女人和老外的毛片| 熟妇一区二区三区| 亚洲av久久久噜噜噜噜| 九九看片| 神马午夜av| 免费看色| 神马久久影院| 亚洲黄色图| 91叉叉叉| 男女做激情爱呻吟口述全过程| 天堂在线中文资源| 免费观看a级片| 久久久精品91| 人成在线视频| 久草青青草| 国产免费a| 久久国产露脸精品国产| 强行糟蹋人妻hd中文字幕 | 成人黄色激情小说| 黄色国产大片| 麻豆导航| 97精品人妻一区二区三区香蕉| 宅男噜噜噜66一区二区| 吊侵犯の奶水授乳羞羞漫画| 国产超级av| www.av黄色| 黄v网站| 看动漫的软件| 成人毛片视频网站| 1024国产视频| 久久精品免费一区二区| 激情文学av| 国产精品va| 久久新网址| 西西人体44| 欧美a级一区二区| 97视频免费在线| 国产福利小视频在线观看| 欧美人妖网站| 亚洲欧美日韩久久| 亚洲妇熟xx妇色黄蜜桃| 色婷婷精品国产一区二区三区| 雪白的扔子视频大全在线观看| 国产情侣免费视频| 你懂得在线网址| 天天操天天插天天射| 婷婷精品进入| 台湾av在线| 人人插人人干| 天天射视频| 91精品福利在线| 美女视频在线免费观看| 夜夜夜爽| 日韩色一区| 国产xxxx孕妇| 三级黄色生活片| 澳门久久| 久久婷婷丁香| 一级真人毛片| 国产理论片在线观看| 蜜臀成人av| 久久精品国产亚洲av成人| 国产永久在线| 色眯眯影视| 久久久国产精品| 日日夜夜视频| 婷婷俺来也| av漫画在线| 国产青青视频| 99re最新| 啪啪短视频| 亚洲老头同性xxxxx| 极品撕开美女衣服| 亚洲日本中文字幕在线| 污到下面流水的视频| 免费看成人片| 爱爱中文字幕| 亚洲激情专区| 12av视频| 欧美精品高清| 免费高清毛片| 国产人妻一区二区| 国产图片区| 初尝人妻少妇中文字幕| 日本在线一区二区三区| 久久久久久久久久久影视| 国产永久在线| 国产91精品欧美| 婷婷丁香综合| 少妇搡bbbb搡bbb搡打电话| 被各种性器调教到哭vk| 国产精品99在线观看| 涩涩涩涩涩涩涩| 精品国产伦一区二区三| 欧美成人aaaaⅴ片在线看| 亚洲免费观看高清完整版在线观看| 久久久一| 西西44rtwww国产精品| 日韩黄色影视| 欧美性猛交xxxx黑人交| 色av综合在线| 亚洲高清在线观看视频| 91一区二区在线| 日本激情网| 久久综合国产| 色网网址| 亚洲激情视频| 黄色伊人网| 黄色午夜| 日本黄色大片免费看| 日韩激情视频在线| av中文天堂| 巨人精品福利官方导航| 男男高h视频| 91手机在线视频| 色婷婷91| 久久九色| 亚洲第一淫片| 久久久不卡| 四虎在线观看视频| 亚欧美视频| 尤物最新网址| 深夜小视频在线观看| 国产制服91一区二区三区制服| 熟女毛毛多熟妇人妻aⅴ在线毛片| 女同性做爰三级| 久久久久久自慰出白浆| 亚洲a图| 水蜜桃av久久久一区| www.污在线观看| 久久久在线| 国产精品成人在线| 国产羞羞| 中文字幕3区| 精品福利影院| 黄色三级三级三级三级| 人物动物互动39集免费观看| 久草国产精品视频| 亚洲乱轮| 四虎影成人精品a片| 日韩av电影在线免费观看| 巨人精品福利官方导航| 免费视频爱爱太爽了| 五月激情六月婷婷| 欧美国产日本在线| 日韩avxxx| 手机看片理论片| 舐め犯し波多野结衣在线观看| 性视频免费| 国产私密视频| 日韩一区二区三区免费视频| 国产精品13p| 国产你懂的| 欧美你懂的| av漫画在线| 天天插天天狠天天透| 麻豆精品在线| 国产精品13p| 九九九九九伊人| 国偷自产av一区二区三区| 亚洲乱码国产乱码精品精的特点| 伊人精品久久| 黄色av一级片| 91资源在线| 日韩一区不卡| 色综合久久久久| a视频免费看| 男人日女人免费视频| 美女黄色在线观看| 日本aa大片| 天天天干| 国产无套精品| 成人啪啪| 99国产精品久久久久久久久久久| 美女裸体十八禁免费网站| 午夜丁香婷婷| 伊人影院在线观看| 国产粉嫩av| 亚洲免费不卡| av亚洲一区| 在线观看成人av| 影音先锋成人| 91在线观看一区| 久久毛片基地| 人人爱人人爽| 蜜臀成人av| 国产偷人妻精品一区二区在线| 91精品视频在线看| 韩日中文字幕| 国产精品无码99re| 蜜臀999| 一区二区亚洲视频| 自拍视频网站| 免费观看国产精品| 日韩欧美电影| 成人亚洲网| 丰满少妇一级| 亚洲卡一| 我不卡一区二区| 亚洲天堂激情| 91视频黄色| 亚洲 欧美 综合 另类 中字| 久久婷婷丁香| 亚洲网站在线| 农村妇女愉情三级| 亚洲自拍天堂| 污片免费网站| 国产亚洲精品成人a| 欧美jizzhd精品欧美18| 在线亚洲+欧美+日本专区| 午夜精品免费视频| 男女爽爽爽| 少妇资源| 女人裸体又黄| 久久久久久久久久电影| 91资源在线| 日韩伦理在线视频| 中国极品少妇xxxxx| 1000部夫妻午夜免费| 色噜噜一区二区三区| 在线观看三区| 精品一区二区在线视频| 欧洲av无码放荡人妇网站| 岛国毛片在线播放| 欧美激情性做爰免费视频| 国产在线美女| 亚洲骚片| 国产一区啪啪| 天堂在线中文资源| 91久色蝌蚪| 性的免费视频| 少妇天天干| 中文字幕22页| 国产一级视频在线播放| 韩国一区在线| www.狠狠| www.天天操.com| 黄色专区| 在线成人免费| 久久色宗合| 一区中文| 激情深爱五月| 在线日韩| 天天操狠狠干| 欧美成年人| av婷婷在线| 久久色宗合| 精品国产一区二区三区四区阿崩| 欧美阿姨| 日韩av专区片| 麻豆传媒最新网址| 天天综合日韩| 久久电影一区二区| h小视频| www.久久.com| 国产一区二区高清| 国产在线综合视频| 国产美女精品| 九九爱精品视频| 成人观看| 91中出| 日韩爱爱免费视频| 日本女人hd| av小说天堂网| 性欧美长视频| 国产日韩欧美中文字幕| 天天操天天射天天| 看av的网址| 色窝av| 四虎影成人精品a片| 欧美群妇大交群中文字幕| 欧美人妻一区二区三区| 日韩特黄一级片| 怡红院院av| 在线免费观看中文字幕| 浴室里强摁做开腿呻吟男男| 欧美黑人添添高潮a片www| a√在线| 五月婷婷视频| 聚色av| 午夜偷拍视频| 日本一区免费| av女星全部名单| 日本女同按摩| 伊人久久久久久久久| 成人av免费看| 男生女生一起搞鸡| 深夜精品福利| 五月婷婷综合在线| 美女bb视频| 草草草影院| 性少妇videosexfreexxx片| 国产激情啪啪| 天天干天天草| 大乳videos巨大吃奶bbw| 91中文字精品一区二区| 禁漫天堂在线| 亚洲你我色| sm久久捆绑调教精品一区| 欧美日韩一| 中国女人一级片| 一级在线视频| av中文字幕电影| 黄色av观看| 国产偷拍一区二区| 成人av网址大全| sm国产在线调教视频| 免费美女视频| 黄一区二区三区| 绿巨人在线观看免费观看在线nba动漫 | 国产亚洲精品一区二区三区| 国产精品无码99re| 国产粉嫩在线| 欧美黄色片网站| 丁香视频| 一本一道av| 熟妇高潮一区二区| 国产日韩欧美二区| 在线日韩| 浴室里强摁做开腿呻吟男男| 99国产在线播放| 自拍偷拍三级| 国产欧美综合一区二区三区| 亚洲啊啊| 国产最新毛片| 巨乳美女被爆操| 超乳hitomi冲田杏梨mird150| 色综合网址| 91免费试看| 青娱乐极品美女| 日韩中文三级| 国产在线播放不卡| 台湾av在线| 亚洲精品久久久乳夜夜欧美| 国产精品zjzjzj在线观看| 国产吧在线视频| 亚洲大尺度| 欧美日韩不卡一区| 亚洲人免费视频| 日韩有码中文字幕在线| 国内激情视频| 日本精品免费一区二区三区| 人人操天天射| www.成人| 亚洲色图在线看| 黄色av一级片| 中国美女一级看片| 亚洲日日日| 日韩午夜精品视频| 久久精品视频7| 粉嫩av懂色av蜜臀av分享| 亚洲看片网站| 天堂在线中文资源| 伊人激情在线| 天堂中文av在线| 69视频污| 国产综合视频一区| 成人综合色站| 国产精品一品| 桃色成人网| a级片在线观看| 制服丝袜在线视频| 成人动漫av在线| 在线成人免费| 日本福利片在线观看| a天堂在线视频| 一本大道伊人av久久综合| 国产精品视频第一页| 九月婷婷丁香| 国产亚洲av在线| 亚洲视频在线免费看| 高h大肚孕期孕妇play| 亚洲天天操| 中文字幕免费在线| 亚洲深深色噜噜狠狠爱网站| 亚洲av无码一区二区二三区| 亚洲一区免费| 自拍偷拍校园春色| 少妇搡bbbb搡bbb搡打电话| 在线观看中文字幕码| 俄罗斯性视频| 国产一区二区h| 成人动漫av在线| 聚色av| 神马久久影院| 老熟妇高潮一区二区高清视频| 国产女女做受ⅹxx高潮| 在线短视频| 深夜福利91| 五月婷婷激情在线| 在线观看亚洲一区二区| 日日摸日日碰| 美女露胸露尿口| 亚洲av无码一区二区二三区| 中文 欧美 日韩| 1区2区3区视频| 日韩日韩日韩日韩日韩| 国产私人影院| 成人观看| 精品国产乱码久久久久久蜜柚| 欧美综合在线观看| 麻豆一区二区| 成人宗合网| 在线观看免费视频| 孕妇xxxxx孕交xxxxx| 欧美男女动态图| 在线免费观看一区二区| 啪啪免费av| 天天干夜夜添| 性一交一乱一伧国产女士spa| 欧美国产日本在线| 日本小视频网站| 国产吧在线视频| 午夜剧场福利| 国产黄色免费| 亚洲图区在线| 92看片淫黄大片欧美看国产片| 德国性经典xxxx性hd| 男生插女生的网站| 国产精品久久亚洲| 国产精品区一区| av日韩中文| 视频在线国产| 中文精品视频| 男人久久| av片大全| 爱爱视频网| 91蜜桃视频| 亚洲欧洲免费无码| 国产美女黄| 欧美三极片| 免费看亚洲| 少妇紧身牛仔裤裤啪啪| h网站在线免费观看| 国产日本免费| 国产性hd| 男生女生一起搞鸡| 亚洲成av人**亚洲成av**| 91偷拍富婆spa盗摄在线| 久久久99精品免费观看| 性高跟鞋xxxxhd人妖| 久久久久不卡| 欧美网站免费| 亚洲精品成人a| 亚洲大片在线| 亚洲瘦老头同性xxxxx| 大陆极品少妇内射aaaaaa| 91久色蝌蚪| 青青草久草| 精品国产成人一区二区| 亚洲无吗一区二区三区| 日韩精品麻豆| 免费在线观看成人| 爱的色放在线| 久久综合国产| 牛牛碰在线| 国产高清不卡无码视频| 午夜天堂精品| 黄色18网站| 日韩黄色影视| 亚洲AV无码久久精品国产一区| 国产羞羞| 欧美日韩国产伦理| 理论片毛片| 国产精品日韩一区二区三区| 免费特级黄色片| 欧美精品1区2区3区| 日本三级aaa| 黄色香蕉网| 日韩av在线导航| 绯色av一区二区| 日本簧片| 国产一区二区免费视频| 九九自拍偷拍| 九九热最新网址| 亚洲老头同性xxxxx| 激情深爱五月| 黑丝啪啪| 91久久久久久久久久久| 久久久网站| 免费无码肉片在线观看| 奇米影视网站| 最新视频 - 8mav| 国偷自产av一区二区三区 | 国产福利91精品| 91麻豆精品国产| 成人手机av| av福利院| 欧美a级成人淫片免费看| 亚洲女人天堂色在线7777 | 日韩伦理av| 羞羞在线观看| 中文字幕无码乱码人妻日韩精品| 成年人的天堂| 18+网站在线观看视频| 成人a级免费视频| 亚洲欧美日韩国产成人精品影院| 日本午夜一区二区| 美女毛片| 爱草视频| 日韩一级中文字幕| 东京热av一区| 亚洲黄色一级| 99热播精品| 女性裸体下面张开| 国产男女猛烈无遮挡| 亚洲欧美h| 国偷自产av一区二区三区 | 免费成人看片| 日韩黄色大片| 亚洲欧美日韩国产成人精品影院| 香蕉a| 91在线看免费| 91精品综合久久| 久久精品国产一区二区| 久久综合99re88久久爱| av片不卡| 蜜桃网av| 午夜xx| 免费伊人网| 六月丁香婷婷综合| 欧美成人精品一区二区男人小说| 91porny九色蝌蚪| av观看一区| 日韩在线视频网站| 97se狠狠狠综合亚洲狠狠| 闷骚老干部cao个爽| 亚洲综合色婷婷| 无套精品| 韩日视频在线| 午夜丁香婷婷| 最近中文字幕在线中文视频| 黄色日韩| 欧美日本成人| 黄色一级片免费| 麻豆网址| 成人午夜激情网| 亚洲一区二区在线看| 天天综合在线观看| 中文字幕一区二区三区精彩视频 | 中文字幕自拍| av女大全列表| 少妇视频一区| 正在播放超嫩在线播放| 午夜电影av| 女仆乖h调教跪趴1v1| 日韩高清av电影| 美女视频三区| 日本中文字幕一区二区| 国产真实乱| 黄色专区| 在线免费观看高清视频| 欧美国产一区二区在线| 国产农村妇女aaaaa视频| 东京av在线| 国产一级特黄aaa大片| 久久久久久久国产精品毛片| 欧美网站免费| 聚色av| 永久免费av无码网站性色av| 成人在线免费观看91| 人人艹人人爽| 亚洲色图美腿丝袜| 热久久这里只有精品| 成人免费视频视频| 黄色大网站| 91在线版| 91在线精品入口| 亚洲国产精品人人爽夜夜爽| 九九热免费在线| av片大全| 人人澡超碰碰97碰碰碰| 亚洲av电影一区| 91网入口| 五月丁香六月激情综合在线视频| 桃色91| av电影在线播放| 日韩高清片| 欧美gaybdsm虐男| 欧美人妖网站| 欧美另类videosgrstv| 久久久久久久久久电影| av电影在线播放| 中文字幕人妻中文| 成人黄色av免费在线观看| 国产精品久久久久久久岛一牛影视| 综合热久久| 美女露胸露尿口| 性欧美欧美巨大69| 青草综合网| www.我爱av| 亚洲涩涩| 亚洲人网| 国产精品免费无码| 国产伊人久久| av黄色网址| 尤物天堂| 亚洲人屁股眼子交1| 日韩一级久久| 日本一区二区视频免费| 日日爽日日操| 粉色视频免费观看| 羞羞在线观看| 中文字幕无码乱码人妻日韩精品| www.夜夜骑.com| 免费成人看片| a级小视频| 欧美日韩成人精品| 丰满人妻一区二区| 国产精品xxx| 天天综合在线视频| 97精品国产97久久久久久春色| 四虎在线观看视频| 亚洲人性生活视频| 自拍视频在线| 17c国产精品| 亚洲午夜电影在线观看| 九月婷婷丁香| 日韩高清av电影| 国产美女精品在线| 欧美亚洲国产一区| 性一交一乱一伧国产女士spa| 特黄特色大片免费视频大全| 中文字幕韩日| 国产激情无套内精对白视频| 欧美 日韩 视频| 久久精品高清一区二区三区| 国产精品视频麻豆| 操操操干干干| 中文字幕韩日| 国产中年熟女高潮大集合| 天天色播| 日日摸夜夜添狠狠添久久精品成人| 男人天堂导航| 91在线观看高清版| 水蜜桃av久久久一区| 这里只有久久精品| 国产嘿咻| 日韩电影免费在线观看中文字幕| 欧美性吧| 国产大片一区二区| 国产鲁鲁视频在线观看免费| 亚洲成人免费在线| 在线观看三级电影| 天天人人综合| 国产三级欧美| 91香草视频| 黄色福利网| 亚洲狼人精品| 成人观看| av一区不卡| 91视频黄色| 四虎精品在线播放| 爱啪啪网站| 自拍1页| 久久久久逼| av电影在线播放| 激情天天| 日本高清视频在线播放| 69精品无码成人久久久久久| 少妇又紧又色又爽又刺激视频| 一级免费在线观看| 欧美激情一区在线观看| 免费看黄色的网址| 中文字幕天堂网| 得得的爱在线视频| 好看的毛片| 噜噜噜色| 国产羞羞| 精品国产伦一区二区三| www.av黄色| 久久dvd| 日本三级影院| 亚洲小说另类| a视频免费看| 欧美猛男gaygay| 啪啪网站大全| 国产suv精品一区二区三区| 在线日韩亚洲| 性感美女被爆操| av在线色| sm国产在线调教视频| av中文字| 91视频www| 青青草免费公开视频| 狠狠撸在线| 国产精品美女久久| 男女互操网站| 黄色网址视频在线观看| 91av俱乐部| 久久手机视频| 日韩电影一二三区| 欧美午夜久久久| 免费视频一区二区三区在线观看| 最美情侣视频完整版高清| 日韩视频在线视频| 亚洲色图36p| 欧州一级片| 男女免费视频| 天干夜天干天天天爽视频| 一区二区在线| 一本一道av| 亚洲综合首页| 男人深夜影院| 91网入口| 五月天激情图片| 国产精品一区麻豆| 国产永久在线| 日韩色一区| 国产乱人对白| 男女后式激烈动态图片| 日韩网站在线播放| 韩国黄色漫画| 国产伦精品一区三区精东| 色综合网址| 国产精品911| 午夜窝窝| 国产精品二区视频| 久久久99精品免费观看| 性欧美最猛| 国产经典一区二区三区| 亚洲第一男人天堂| www黄色| 天天躁日日躁狠狠躁欧美| 亚洲国产精品成人天堂| 国产日本亚洲| 国产美女精品| 久久久综合色| 少妇紧身牛仔裤裤啪啪| 亚洲理论电影在线观看| 欧美综合在线观看| 污网站免费| 日本黄色片免费看| 一区二区三区视频在线观看免费| 91精品在线看| 国内免费av| 欧美日韩小说| 蜜臀aⅴ一区二区三区| 日本韩国欧美| 亚洲制服一区| 免费古装一级淫片潘金莲| 91精品视频一区二区| 一区二区国产在线观看| 91偷拍精品一区二区三区| 综合激情一区| 被爆操喷水了啊 高h| 综合黄色| 自拍亚洲欧美| 咪咪电影| 亚洲爱情岛论坛永久| 亚洲三区在线播放| 欧美青青草| 精品电影一区| 伊人手机在线视频| 伊人精品久久| 亚欧美视频| 天天做天天射| 本道久久| 91九色porny国产| 欧美日韩一| 国产人妻大战黑人20p| 亚洲成人激情av| 天天干夜夜草| 国产精品探花一区二区三区| 日韩视频免费看| 1级黄色片| 手机av网址| 中文字幕在线第一页| 一区二区视频免费在线观看| 日韩高清二区| 黄视频免费在线看| 欧美 日韩 视频| 国产中文字幕一区| 欧美性猛交xxxx黑人猛交| 高h放荡受浪受bl| 国产视频资源在线观看| 91福利影院| 91超碰在线免费观看| 成人在线免费观看91| 成人高清一区| 亚洲免费观看高清完整版在线观看| 免费黄色观看| 中文字幕电影在线| 少妇做爰www| 九七人人爽| aⅴ天堂网| 欧美三级在线| 久色资源| 丰满熟女人妻一区二区三区| 成人毛片在线视频| 天天操夜夜撸| 香港av电影| 国产天堂网| 日韩欧美一级二级| 欧美36p| 第五色婷婷| 日皮视频在线观看| 日韩无码精品一区二区三区| 自拍视频在线| 天天干夜夜玩| 中文字幕无码乱码人妻日韩精品| 欧美亚洲影院| 精品三级国产| 天天干夜操| 国产青青视频| 在线观看你懂的视频| 热99在线| 国产精品美女在线观看| 日韩高清片| 爱草视频| 欧美日韩高清| 亚洲欧美黄| 亚洲av无码成人精品区| 亚洲精品中文在线观看| 欧美一级一片| 永久免费在线| 日皮视频在线观看| 日韩成人av一区| 强乱中文字幕| 爱的色放 韩国| 亚欧美在线观看| 在线视频免费观看| 激情午夜天| 国产视频精品在线| 69视频在线免费观看| 欧美挤奶吃奶水xxxxx| 色婷婷基地| 裸体免费| 欧美精品黄色片| www黄色在线观看| 黄色av观看| 99久久久无码国产精品6| 久久99精品久久久久| 黑人极品ⅴideos精品欧美棵| 免费av网站在线播放| 狠狠爱五月婷婷| 免费在线观看的黄色| 亚洲性猛交xxxx| 亚洲人性生活视频| 久久婷婷五月综合| 欧美先锋资源| 美女考逼| av中文在线| 亚洲国产精品成人天堂| 日韩免费观看一区二区| 成年人黄视频| 欧美日韩tv| 日韩一级黄| 亚洲一区日韩| 久久密| 简单av在线| 放荡的美妇在线播放| 在线播放 日韩| 男女xx网站| 成人黄色电影在线观看| 国产精品刮毛| 麻豆一级片| 日本在线观看| 日韩美一区二区三区| 337p色噜噜| 久久久在线| 成人gav| 麻豆mv在线观看| 日韩黄色影院| 精品探花| 久久这里只有精品8| 黄色三级三级三级三级| 欧洲av无码放荡人妇网站| 美梦视频大全在线观看高清| 亚洲另类欧美日韩| 亚洲国产成人精品久久| 91超碰在线免费观看| 丰满老女人高潮呻吟| 亚洲第一狼人社区| 黄色a网| 黄片一区二区| 91色网站| 男人天堂手机在线观看| 色av免费| 成人国产精品久久久| 成人黄色av免费在线观看| 国产精品操| 污视频在线播放| 日本黄色片免费看| 欧美国产日本在线| 在线免费成人网| 亚洲第一男人天堂| 午夜看片在线观看| 蝌蚪自拍网站| 中文日韩在线观看| 国产精品成人在线| 香蕉视频网站入口| 国产精品乱码一区二三区小蝌蚪| 国产女厕一区二区三区在线视 | 麻豆av网站| 尼姑福利影院| 美女无套| 69精品无码成人久久久久久| 午夜爽视频| 中文字幕日韩在线观看| 国产精品无码在线播放| 女王脚交玉足榨精调教| 国产亚洲精品av| 91在线看免费| 国产视频污在线观看| 中文字幕在线观看免费| 亚洲一区精品视频| 骚视频在线观看| 在线成人| 日韩黄色免费电影| 想要视频在线观看| 好男人资源| 国产一级片免费在线观看| 亚洲福利一区二区| 激情欧美亚洲| 你懂的福利视频| 一区二区国产在线| 日本一区二区视频| 丁香视频| 国产一区二区三区在线免费| 韩国女主播av| 亚洲你懂的| 亚洲理论电影在线观看| 午夜精品久久久久久不卡8050| 成年人黄视频| 麻豆传媒最新网址| 先锋影音男人| 国产区免费| 久久香蕉一区| av在线网址大全| 亚洲第一狼人社区| 国产精品免费久久久久| 欧美日本免费| 亚洲第一视频在线播放| 巨人精品福利官方导航| 尤物网在线| 一级真人毛片| 红桃视频成人传媒| 古代玷污糟蹋np高辣h文| 日日躁夜夜躁| 免费人成视频在线播放| 自拍毛片| 日本aa大片| 天天草天天干| 免费黄色观看| 免费a观看| sleepless动漫在线播放免费观看 不卡视频一区二区三区 | 国产福利电影一区二区三区| 东京av在线| 国产夫妻性生活视频| 国产精品美女视频网站| 在线国产福利| 色欲欲www成人网站| 亚洲狼人精品| av电影一区二区| 午夜精品免费视频| 国产精品二区视频| 日韩在线观看高清| 97久色| 日本极品少妇视频| 色一区二区三区| 在线免费观看视频你懂的| 午夜偷拍视频| 最近2018年手机中文字幕版 | 亚洲福利片| 丝袜少妇av| 少妇毛片一区二区三区| 伊人爱爱网| 久久久久久中文字幕| 婷婷中文网| av 少妇| 女生被男生c| 国产在线最新| 亚洲第一成网站| 国产在线观看xxx| 国产在线网站| 羞羞在线观看| 中文字幕国产亚洲| 一区二区片| 国产69页| 久久久综合色| 久久久精品久| 婷婷丁香综合| 美女黄色一级视频| 91视频色| 欧美www在线观看| 毛片无码免费无码播放| 韩国一区二区三区视频| 国产v日产∨综合v精品视频 | 日本不卡一区视频| 国产精品美女www| 国产真实乱| 欧美日韩免费一区二区| 国产吧在线视频| 爱福利视频网| 无码精品视频一区二区三区| 亚洲AV无码精品国产| 成人av网址大全| 婷婷色av| 一级做a爰| 青青伊人国产| 日韩av在线天堂| 黄色成人免费在线| 啪啪网站大全| 成人精品视频| 亚洲aⅴ网站| 国产综合视频一区| 色涩综合| 奇米影音| 男人天堂亚洲天堂| 一边搓奶一边摸下面太爽了| 美女av一区| 成人自拍视频在线观看| 日本精品在线看| 欧美久久99| 国偷自产av一区二区三区| 天天综合在线视频| 自拍视频网站| 日本精品免费一区二区三区| 欧洲自拍偷拍| 色婷婷av在线| 国产精品视频你懂的| 日韩精品一区二区三区第95| 你懂得在线网址| japan粗暴video蹂躏| 日本一区中文| 欧美日韩中文字幕在线播放| 高清一级片| 日韩精品在线观看AV| 中国吞精videos露脸| 国产鲁鲁视频在线观看免费| 精品一区二区在线观看视频| 天天干夜操| 亚洲男人天堂2018| 无码精品久久久久久久| 美国大片网| 日韩无码精品一区二区三区| 国产精品无码99re| 欧美激情在线播放| 国产91精品ai换脸| 波多野结衣绝顶大高潮| 亚洲熟妇无码乱子av电影| 人妻在卧室被老板疯狂进入| 国模无码视频一区| 在线观看中文字幕码| 中文 欧美 日韩| 奴色虐av一区二区三区| 九九精品在线播放| 精品国产伦一区二区三| 激情91视频| 宝贝乖h调教灌尿穿环| 久久天堂影院| 18+网站在线观看视频| 白石茉莉奈黑人| 99性视频| 欧美久久一区| 欧美日本成人| 黄页免费网站| 在线观看三级电影| 超级碰在线视频| 黄色香蕉网| 国产原创精品| 最新视频 - 8mav| 进去里片欧美| 亚洲午夜网| 免费操人视频| a√天堂在线| 国产成人在线观看| 视频一区在线播放| 色视频线观看在线播放| 天天舔天天操| av资源中文字幕| 免费美女视频| 色欲AV无码精品一区二区久久| 日本免费毛片| 17c国产精品| 婷婷一区二区三区四区| 亚洲精品.www| 国产精品久久久网站| 性一交一乱一伧国产女士spa| 国产免费av片在线| 欧美日韩亚洲国产一区| 美日韩久久| 奇米四色在线观看| 九九九在线| 无码av中文字幕久久专区| 成人看片泡妞| 激情九月天| 一级免费在线观看| 在线亚洲+欧美+日本专区| 好男人资源| 亚洲激情一区| 97成网| 奇米亚洲| 久久dvd| 日本不卡一区视频| 舐め犯し波多野结衣在线观看| 成人听书哪个软件好| 欧美人妻一区二区三区| 国产一级美女| 国产偷拍一区二区| 日韩精品一区二区三区第95| 欧美中文字幕一区二区| 吊侵犯の奶水授乳羞羞漫画| 国产亚洲精品成人| 自拍偷拍99| 久久人爽| 男人亚洲天堂| 99在线热播精品免费| 男生女生一起搞鸡| 欧美精品高清| 天堂资源| 毛片免费播放| 久久久不卡| 婷婷色中文网| 欧美午夜久久久| 午夜特级毛片| 午夜精品福利一区二区蜜股av| 91系列在线观看| 欧美日韩亚洲国产一区| 亚洲黄色图| 国产91精品久久久久久久| 精品一区二区三区入口| av中文字幕电影| 亚洲瘦老头同性xxxxx| 日皮视频在线观看| 日本在线高清| 亚洲一区日韩| 人妖系列| 咪咪电影| 免费在线观看的黄色| 精品一区不卡| 好吊妞视频一区二区三区| 国产精品久久久网站| 日韩电影一二三区| 国产亚洲欧美精品久久久www| 菠萝蜜av| 三级av片| 亚洲精品影片| 黄色大网站| 麻豆高清| 午夜剧场免费观看| 草莓视频免费在线观看| 欧美专区中文字幕| 欧美少妇一区| 欧美成人a交片免费看| 亚洲色精品三区二区一区| 午夜一区二区三区免费| 91视频观看免费| 欧美顶级少妇做爰hd| 中文字幕一区二区三区在线视频| 欧美色图综合网| 裸尼姑熟蜜桃| 看动漫的软件| 91插插插永久免费| 欧美阿姨| 免费看的黄色| 91插插插视频| 成人观看| 国产精品综合在线| 国产精品久久久网站| 欲色影音| 五月天激情图片| 国产黄色91| 草碰在线| 狠狠操人人干| 久久久一二三区| 四虎永久网站| 五月天激情四射| 日韩激情电影在线| 天天看片天天操| 欧美顶级metart裸体全部自慰| 怡红院av一区二区三区| 网站在线免费观看| 欧美日韩成人在线观看| 国产高清在线看| 毛片av网| 中国黄色片子| 污网站视频| 日韩 二区| av中文字| a天堂在线视频| 蜜桃网av| 亚洲第一第二区| 免费成人在线观看视频| 日本aaa级片| 中文字幕视频二区| 免费看一级视频| 91丨porny丨成人蝌蚪| a√在线| 欧美先锋资源| 亚洲动漫精品| 成人一区三区| 久久综合99re88久久爱| 欧美日韩高清| 日本在线一区二区| 精品人伦一区二区三区蜜桃免费| 国产第九页| 丁香免费视频| 日韩欧美有码| 欧美日韩在线视频免费| 一区二区三区三区在线| 国产激情无套内精对白视频| 91精品国产乱| 国产精品国产馆在线真实露脸| 亚洲色图19p| 亚洲国产成人精品久久| 国产黄a三级| 宅男噜噜噜666在线观看| 亚洲丁香| 免费av小说| 日韩一区二区视频| 黄色成人免费在线| 国产精品一区二区麻豆| 最新视频 - 8mav| 成人av色| 污污网站免费在线观看| 爱啪啪网站| 亚洲精品成人在线视频| 五月激情四射网| 国产xxxx孕妇| 国产精品极品白嫩在线| 5级黄色片| 久久理伦| 91福利视频网| 久久毛片基地| 国产精品色在线网站| 自拍偷拍色综合| 国产不卡在线播放| 手机看片理论片| 丰满人妻一区二区三区免费| 天天上天天干| 伊人久久综合影院| 欧美日本亚洲韩国国产| 日日摸日日| 国产suv精品一区二区三区| 国产精品视频久久久久| 一级全黄男女免费大片| 欧美日韩成人精品| www.污在线观看| 中文字幕一区二区三区精彩视频| 综合xx网| 欧美整片sss| 妹子干综合| 性做久久久久久| 亚洲日本中文字幕在线| 日本特黄网站| 中文字幕一区二区三区精彩视频| 亚洲综合999| 毛片在线观看网站| 2020狠狠操| 污污的视频在线观看| 99在线视频免费观看| 在线免费观看一区二区| 美女av一区| 狠狠撸在线| 久久艹伊人| 午夜精品一区二区三区视频| 丁香网站| 久久人成| 四虎免费久久| 极品粉嫩小仙女高潮喷水久久| 久久久91| 欧美日韩亚洲国产一区| 水蜜桃av久久久一区| 国产一级片免费视频| 噜噜色成人| 国产欧美精品久久| 国产福利av| 国产日本免费| 国产日韩电影| 久久久最新| 亚洲性视频网站| 亚洲欧美一区二区视频| www色com| 九九综合在线| 北条麻妃99精品青青久久| 毛片网站大全| 黄色片在线观看免费| 白浆在线播放| 伊人丁香| 五月婷婷六月合| 国产日韩欧美二区| 欧洲一级黄| 天堂中文字幕在线| 91精品在线看| 暖暖av在线| 亚洲一区二区乱码| 免费观看av网站| 四级黄色片| 日本国产中文字幕| 视频一区在线播放| 日本不卡不卡| 铃原爱蜜莉在线观看| 久久天堂影院| 十大污视频| 成人黄色大片在线观看| 91在线版| 少妇紧身牛仔裤裤啪啪| 女娃bbwbbwbbwbbw| 爽爽爽av| 免费网站黄色| 欧美黄色小说视频| 91网站在线播放| 成人在线免费观看91| 国产精品久久久91| www国产无套内射com| 国产精品中文| 香蕉视频网站入口| 国产麻豆精品theporn| 免费在线观看国产精品| 蜜桃视频网| 激情亚洲网| 欧美精品一区二区在线播放| 日本黄色片免费看| 日韩在线中文字幕视频| 青青草视频一区| 怡红院一区二区三区| 美女日批视频在线观看| 四虎国产视频| 国产女厕一区二区三区在线视| 国产精品婷婷| 亚洲五级片| 欧美a级黄色| 大尺码肥胖女系列av| 九九九久久久精品| 性欧美69| 日本一区二区视频| 五月婷婷六月合| 美女久久精品| 成人免费网站| 人物动物互动39集免费观看| 91免费成人| 国产亚洲精品中文字幕| 国产精品无码无卡无需播放器| 一级黄色大毛片| 黄网站免费在线观看| 欧美狠狠爱| 久久久久久久久艹| 久久久久亚洲色欲AV无码网站| 五月婷婷综合在线观看| 九九视频精品在线| 亚洲午夜精品一区,二区,三区| 国产九九精品视频| 亚洲高清影院| 国产美女主播在线| 久草网在线视频| 91久久精品在线| 天堂8在线天堂资源bt| 亚洲黄色图| 久久成人视屏| 五月婷婷六月综合| 国产男女精品| 亚洲国产天堂久久综合| 欧美乱淫| 五月激情四射网| 久久久黄色大片| 关之琳三级做爰| 少妇太紧太爽又黄又硬又爽| 欧美色就是色| 自拍偷拍精品视频| 国产成人免费看一级大黄| 少妇视频一区| 在线观看h视频| 亚洲成人av在线| 成人免费无码大片a毛片| 日本黄图| 大陆极品少妇内射aaaaaa| 久久盗摄| 欧美挤奶吃奶水xxxxx| 国产成人av无码精品| 男生插女生的视频| 免费看色| 国产爽视频| 国产 欧美 日韩| 夜夜高潮天天爽| 亚洲女优在线播放| 一本大道伊人av久久综合| 日本h在线观看| 久久精品一本| 黄色网www| 国产伦精品一区二区三区88av| 干综合网| 国产夫妻性生活视频| 毛片网站大全| 人物动物互动39集免费观看| 久一区二区三区| 精品一区二区三区免费| 男人天堂aaa| 日韩岛国片| 国产精品久久久久精| 国产v日产∨综合v精品视频| 成人高清一区| 中文字幕第一页久久| 少妇高潮露脸国语对白| 大陆av片| 日本va欧美va国产激情| 国产6区| 人妖一区二区三区| 91精品推荐| 亚洲一区二区伦理| 青青草视频国产| 啪啪短视频| 国产欧美综合一区| 91久色蝌蚪| 国产农村妇女aaaaa视频| 成,人免费视频播放| 亚洲色鬼| 少妇做爰www| 亚洲网站av| 看黄色网址| 日本国产在线观看| 一起草视频在线播放| 一区二区国产在线观看| 欧美骚少妇| 后进极品美女圆润翘臀| 成人免费视频网址| xvideos李丽莎大尺度| sm国产在线调教视频| av日韩中文字幕| 黄色片网站大全| 欧美厕所偷拍| 久久综合99re88久久爱| 国产精品麻豆果冻传媒在线播放| 噜噜色成人| 青青草视频国产| 欧美日韩1区2区| 干综合网| 免费看色| 中文字幕一区在线观看| 和美女啪啪| 欧美日韩国产传媒| 在线观看不卡的av| 亚洲一区三区| 欧美粗暴jizz性欧美20| 12av视频| 18网站视频| 福利一区二区在线| 永久免费av无码网站性色av| 精品福利一区二区三区| 正在播放木下凛凛xv99| 福利资源导航| 蜜臂av| 亚洲一区色图| 日本在线网站| 美日韩av| 97超碰人人干| 亚洲第一视频在线播放| 亚洲一区二区三区在线视频| 青娱乐激情| 亚洲大片在线| 99热影院| 国产99久| 撸撸在线视频| 午夜看看| 亚洲乱码日产精品bd在线观看| 免费久久久| 深夜国产福利| free性中国hd国语露脸| 亚洲欧洲第一视频| 澳门黄色网| av五月婷婷| 免费看污视频的网站| 亚洲综合中文| 黄色午夜| 绯色av蜜臀vs少妇| 夜色福利| 永久免费成人代码| 国产精品jizz在线观看老狼| 宅男噜噜噜66一区二区| 国产一级啪啪| 亚洲av无码一区二区二三区| 欧美骚少妇| av福利院| 久久新网址| 欧美日韩国产伦理| 牛牛av在线| 日本色片网站| 绝母1第6集免费观看动漫| av在线亚洲男人的天堂| 91porny九色| 日本国产在线观看| 日本精品网站| 色播五月激情五月| 五月伊人网| 男人资源站| 成人录像| 久久国产精品免费看| 精品一区久久| 青青草原av在线| 国产精品永久免费观看| 超乳hitomi冲田杏梨mird150| 国产九九精品视频| 热99| 狼人伊人干| 午夜精品久久久久久久99| 欧美a视频在线| 欧美日韩1区2区| 亚洲成人激情av| 亚洲一区二区三区在线视频| 国产福利电影一区二区三区| 免费中文视频| 懂色av蜜臀av粉嫩av分享吧最新章节| 精品一区久久| 7777精品视频| 日韩久久影视| 大香依人| 天天看天天摸天天操| 亚洲成a人片在线| 无码精品久久久久久久| 日本xxxx高清色视频| 国产真实乱| 精品资源在线| 色婷婷六月天| 五月婷婷一区二区三区| 奇米网一区二区三区| 无码国模国产在线观看| 国产xxxx性hd极品| 精品美女| 亚一区| 后进极品美女圆润翘臀| h毛片| 午夜激情免费视频| 美女被c爽| 少妇午夜电影| 日本极品少妇| 午夜激情视频在线观看| 自拍偷拍网| 迷嫩下药灌醉一区二区| 91激情捆绑调教喷水| aⅴ天堂网| 国产精品视频区| 91视频综合| 欧美3p视频| 国产欧美日韩视频在线观看| 日日操夜夜干| 国产日本欧美一区二区三区| 韩国伦理片免费看| 欧美成人精品一区二区男人小说| 久久精品夜夜夜夜久久| 国产日本亚洲| 日韩精品在线观看AV| 亚洲裸体| 69**夜色精品国产69乱| 欧美一线高本道| 教练含着她的乳奶揉搓揉捏动态图| 成人免费毛片aaaaaa片| 绝母1第6集免费观看动漫| 91在线精品入口| 久草最新网址| 一级做a爰| 妹妹窝人体色| 国产福利免费| 涩涩网址| 综合xx网| a级黄色片| 思思久久99热只有频精品66| a级在线视频| 9999精品视频| 日韩淫片| 另类小说一区| 西西人体www大胆高清| 四川一级毛毛片| 欧美黑人巨大xxx极品| 伊人三区| 国产乱人伦精品一区二区| 人妻少妇偷人精品久久性色| 人人艹人人爽| 中文字幕人妻精品一区| 精品一区久久| 精品国产乱码久久久久久蜜柚| 无遮挡aaaaa大片免费看| 日本在线观看| 国产一区啪啪| 精品视频一区在线| 亚洲a一级| 亚洲偷偷自拍| 亚洲欧美黄| 黄色日韩在线| 精品人妻少妇一区二区| 五月天狠狠干| 日韩淫视频| 在线看片资源| 99成人精品| 粉色视频免费观看| 亚洲深深色噜噜狠狠爱网站| 在线三级av| 国产精品国产一区二区| 99国产精品久久久久| 欧美精品黄色片| 操白虎逼| 日韩欧美精品网站| 男女做那个视频| 想要视频在线观看| 成人免费视频视频| 片黄在线观看| 亚洲精品合集| 亚洲免费资源| 高潮videossex高潮| 久久久av免费| 亚洲乱码精品久久久久| 三级在线免费| 成人免费视频视频| 精品人妻久久久久久888不卡| 日韩伊人| 亚洲精品码| www.五月激情| a级片免费网站| 成人亚洲免费| 免费看a的网站| 日本色视频| 舌奴调教日记| 亚洲免费大全| 蜜臂av| 成人性生活免费视频| 久草资源在线| 在线观看不卡的av| 尤物在线网站| 欧美 日韩 视频| 性史性dvd影片农村毛片| 老司机青青草| 久久精品免费一区二区| 色网网址| 二区久久| 91久色| 日本极品丰满ⅹxxxhd| 日批免费视频| 性渴老太作爱| 色骚综合| www.精品视频| 超碰人体| av中文字| 日本人性爱视频| 国产亚洲精品中文字幕| 草莓视频在线免费观看污| 黄色福利片| 亚洲精品中文字幕乱码无线| 伊人久久艹| 国产一级美女| 国产成年网站| 欧美韩国日本一区| a天堂在线视频| 92看片| 亚洲色偷偷色噜噜狠狠99网| 看av的网址| 一级淫片a| 妹妹窝人体色| 久久国产精品久久| 一级片一级片| 三级性视频| 国产91看片| 亚洲我不卡| 国产精品zjzjzj在线观看| 葵司qvod| www婷婷av久久久影片| 国产日日干| 国产精品午夜福利| 最近中文在线观看| 777久久久| 日本精品一二区| 国产高潮在线| 亚洲色偷偷色噜噜狠狠99网| 精品人妻一区二区三| 久久盗摄| 在线看b| 亚洲色图在线看| 久久人体视频| 免费成人在线观看视频| 五月婷婷视频| 成人一区二区三区视频| 日韩一级黄| 久色资源| 黄色性网站| av在线gk| 国产精品区一区| 99久久久无码国产精品6| 美女网站视频在线观看| 免费观看av网站| 色播丁香| 日韩欧美天堂| 欧美激情在线播放| 欧美视频久久| 亚洲黄色一区| 亚洲AV无码成人精品一区| 日本打屁股网站| 日本aa视频| 啪啪中文字幕| 国产视频资源在线观看| 免费观看国产精品| 天天色播| 3p视频在线播放| 四色最新网址| 欧洲亚洲天堂| 亚洲加勒比在线| 黄色伊人| 被黑人啪到哭的番号922在线| 国产福利小视频在线观看| 亚洲图区在线| 亚洲午夜电影在线观看| 99av视频| 少妇人妻丰满做爰xxx| 高潮videossex高潮| 动漫3d精品一区二区三区乱码| 黄色国产小视频| 污视频在线播放| 少妇做爰www| 日本三级日本三级日本三级极| 五月婷婷综合在线观看| 激情图片av| 免费国产黄色网址| 欧美精品国产一区二区| www.精品视频| 成,人免费视频播放| 日韩欧美精品久久| 天天舔天天操| 亚洲一区欧美激情| 韩日小视频| 波多野结衣三级视频| 欧美77777| 久久久久看片| 成年人黄色| 色呦呦在线播放| 大香依人| 免费a观看| 伊人三区| 91在线看| 自拍偷拍校园春色| 九色中文字幕| 亚洲国产成人在线播放| 中文字幕在线观看网| www婷婷av久久久影片| 国产成人精品免费看视频| 91免费观看入口| 春色视频| 在线国产中文字幕| 69精品一区二区三区| 天天综合网网欲色| 疯狂撞击丝袜人妻| 成人在线观看www| 国产第1页| 2018日日夜夜操| 日韩一区二区三区免费视频| 色播五月激情五月| 欧洲av无码放荡人妇网站| 护士人妻hd中文字幕| 99性视频| 无码人妻丰满熟妇啪啪网站 | 国产图片区| 波多野结衣女同| 沈樵精品国产成av片| 中国丰满熟妇xxxx性| 欧美日韩亚洲国产一区| 中文字幕免费在线| 九一在线视频| 手机成人在线视频| 亲子伦视频一区二区三区| 怡红院一区二区三区| 国产精品入口夜色视频大尺度| 亚洲一区精品视频| 91.色| 免费古装一级淫片潘金莲| 亚洲人免费视频| av资源中文字幕| 国产精品zjzjzj在线观看| 亚洲综合色婷婷| 69精品一区二区三区| 欧美精品高清| 人人97| 日韩黄色在线| 亚洲性视频网站| 亚洲风情亚aⅴ在线发布| 美日韩av| 日本一区免费| 亚洲av成人精品毛片| 粉嫩av懂色av蜜臀av分享| 久久国产主播| 四虎国产视频| 亚洲xx网| 97人人爽人人爽人人爽人人爽| 国产地址| 永久免费在线| 国产精品久久久一区二区三区| 厨房性猛交hd| 亚洲免费成人在线| 五月天精品在线| www.成人| 中文字幕日韩无| 日本簧片| 99av视频| 大香依人| 国产精品久久久久婷婷| 高清免费毛片| 96精品在线| www.久久久久| 中文字幕成人在线视频| 99热国产| 色网站在线免费观看| 女王脚交玉足榨精调教| 成人黄色av免费在线观看| 9999久久久久| 天天操天天干视频| 日本aaa级片| 国产成人在线观看| 精品久热| 自拍三区| 老妇裸体性猛交视频| 天天天综合网| 中文字幕3区| 蜜臀999| 国产精品免费一区二区三区都可以 | 国产精品婷婷| 91亚洲成人| 91久久久久久久久久| 久操久操| 人人人爽| 大乳videos巨大吃奶bbw| 91久色蝌蚪| 精品91av| 国产热热| 97在线观看| 雪白的扔子视频大全在线观看| 亚洲国产成| 欧美久久99| 巨骚综合| 横恋母在线观看| 96精品视频| 国产精品hd| 天堂在线| 欧美少妇15p| 免费在线观看av片| 九九综合在线| 成年人看的免费视频| 成人无遮挡| 天堂在线中文在线| 91短视全免费| 草久在线视频| 亚洲AV无码久久精品国产一区| 中文字幕视频二区| 蜜桃视频网站18| 99国产在线播放| 91日韩欧美| 亚洲色精品三区二区一区| 激情网久久| 欧美bbxxx| 美女黄污网站| 亚洲一区二区av电影| 亚洲另类色综合网站| 国产精品婷婷| 国产网站无遮挡| 日本欧美激情| 久久99精品久久久久久国产越南| 澳门黄色网| 精品九色| 欧美青青草| 色婷婷六月天| 偷拍视频网| 亚洲爱情岛论坛永久| 日韩一级黄| 韩国国产在线| 日本色视频| 狠狠操天天操| 日本精品一二区| 两个人看的www视频免费完整版| 国产98在线| 懂色av一区二区在线播放| 国产精品毛片一区二区在线看| 农村妇女精品一区二区| 第一福利网址导航| 亚洲高清在线观看视频| 色综合久久久久| 在线看a视频| 亚欧美在线观看| japan粗暴video蹂躏| 日韩伦理在线视频| 少妇人妻丰满做爰xxx| 亚洲国产精品va| 不卡av免费| 欧美骚少妇| 国产又爽又黄免费视频| 黄色片网站大全| 久久国产精品免费看| 日本久久一级片| 爽爽影院在线免费观看| 亚洲成人免费在线| 色婷婷av在线| 极品粉嫩小仙女高潮喷水久久| 91免费试看| 亚洲人屁股眼子交1| 波多野结衣绝顶大高潮| 深爱激情久久| 日韩高清片| 欧美亚洲影院| 波多野结衣www| 国产原创精品| 国产亚洲欧美一区二区| 日本中文字幕一区二区| 福利社午夜| 日本午夜一区二区| 理论片毛片| 五月天 丁香| 国产精品免费久久久久| 日韩一二在线| 欧美网站免费| 超碰人人草人人干| 男人久久| 9999精品视频| 3p视频在线播放| 九一精品一区| 香蕉911| 亚洲人成一区| 亚洲二区三区四区| 男女后式激烈动态图片| 精品一区二区三区四区五区六区| 中国女人和老外的毛片| 国产在线黑丝| 国产91精品欧美| 欧美少妇一区| 极品超粉嫩尤物69xx| 手机在线观看国产精品| 黄频在线观看| 国产偷自拍视频| 国产精品老女人| 天天操夜夜爱| 草莓视频免费在线观看| 怡红院一区二区三区| www.精品在线| 亚洲二区在线观看| 欧美综合在线观看| 黄片毛片在线看| 91亚洲成人| 欧美一级三级| 永久免费成人代码| 91黄免费| 羞羞色院91蜜桃| 婷婷俺来也| 蜜臀999| 水蜜桃av久久久一区| 少妇做爰www| 先锋av资源网站| 日韩av在线播放网址| 人人操天天射| 激情午夜视频| 大学生三级中国dvd| 精品伦精品一区二区三区视频| 99国产精品自拍| 国产第1页| 亚洲 欧美 综合 另类 中字| 天天综合在线视频| 日本小视频网站| 二区久久| 亚洲黄在线观看| 欧美韩国日本一区| 在线观看日韩av电影| 国产chinese男男gaygay视频| 亚洲国产精品成人va在线观看| 久久久久中文| 国产精品色在线网站| 国产视频资源在线观看| 在线观看中文字幕亚洲| 精品日韩制服无码久久久久久| 色视频线观看在线播放| 成人午夜在线观看视频| 白丝少妇| 久久精品免费电影| 欧美激情xxx| 丰腴饱满的极品熟妇| 男人天堂亚洲天堂| 少妇视频网| 亚洲精品国产成人| 欧美男女动态图| 超碰国产91| 亚洲av无码一区二区三区网站| 韩国av在线播放| 亚洲每日更新| 久久精选| 狠狠操影视| 九九热99久久久国产盗摄| 进去里片欧美| 国产v日产∨综合v精品视频| 四色最新网址| 性日本xxx| 天天毛片| 欧美成人r级一区二区三区| 色屁屁一区二区三区视频| 亚一区| 就操在线| 夜夜夜爽| 欧美一级三级| 精品成人在线视频| 日本一区二区三区视频免费看| 免费特级黄色片| 亲子伦视频一区二区三区| 日韩xxxxxxxxx| 四虎免费久久| 在线观看中文字幕亚洲| 卡一卡二卡三在线| 韩日小视频| 欧美日韩在线不卡| 国产r级在线观看| 国产精品视频网站| 在线观看免费一区| 欧美视频久久| 久草最新网址| 中文字幕激情视频| 成人免费毛片aaaaaa片| 国产羞羞| 人人超碰在线| 一级黄色片欧美| 国产成人 综合 亚洲| 黄色片网站视频| 九九精品免费视频| 国产制服91一区二区三区制服| 免费h在线| 插插插亚洲| 国产二区视频在线观看| 红桃视频成人传媒| 国内三级在线| 在线观看三区| 婷婷综合在线| 欧美少妇15p| 精品国产电影| 日韩伦理大全| 亚洲av永久无码精品一百度影院| 在线免费观看视频你懂的 | 亚洲色偷偷色噜噜狠狠99网| 操操操插插插| 香蕉影院在线观看| 久久九九国产精品怡红院| av毛片| 韩国女主播av| 日韩高清av电影| 国产a区| 国产在线观看xxx| 日韩欧美一二三| 怡红院av一区二区三区| 午夜视频欧美| 青草久久久| 香蕉久久夜色精品国产| 四虎免费久久| 国产超碰人人爽人人做人人爱| 久久怡春院| 亚洲xx网| 色欲av无码一区二区人妻| 制服丝袜中出| 欧美激情导航| 精品91av| 超在线视频| 插插宗合网| 在线超碰91| 在线观看视频99| 伦伦av电影| 国产一级淫片a视频免费观看| 日本成人黄色片| 成人国产精品久久| 欧美成人精品欧美一| 欧美亚洲影院| 亚洲制服一区| 成年人黄视频| 强行糟蹋人妻hd中文字幕 | 久久久99精品| 日本特黄网站| 小辣椒导航| 午夜噜噜噜| 奇米影视网站| 性做爰裸体按摩视频| 在线观看免费视频一区| 青青草在线观看免费| 久久婷婷丁香| 欧洲自拍偷拍| 黄色一级片免费| 亚洲九色| 青娱乐极品美女| 大陆av片| 91亚洲成人| 天天干夜操| 成人精品亚洲| 中文日韩字幕| 美女被c爽| 国产精品自拍在线观看| 五月天国产| 无码国模国产在线观看| 狠狠操狠狠插| 亚洲伦理在线播放| 两个人看的www视频免费完整版| 青久草视频| 美女考逼| 免费av在| 国产另类xxxxhd高清| 日日操日日射| 久久精品高清一区二区三区| 午夜操一操| 中文字幕成人在线视频| 午夜特级毛片| 国产va在线| 国产精久久久| 两个人看的www视频免费完整版| 红桃视频成人传媒| 亚洲人成77777| 免费看三级黄色片| 99国产精品自拍| 欧美人与动物xxx| 成人动漫影音先锋| 欧美性猛交xxxx乱大交极品| 在线免费观看一区二区| 尤物av在线播放| 精品视频一区二区三区| 在线观看免费视频| www日本xxx| 老湿福利影院| 女人囗交吞精囗述| 香蕉a| 91手机在线观看| 久久人成| 亚洲一区二区三区激情| 97国产资源| 粉嫩av一区二区三区| 香蕉影院在线观看| 日本天天操| 自拍亚洲欧美| 久操免费在线视频| 亚洲美女视频一区| 亚洲妇熟xx妇色黄蜜桃| 成人免费毛片内射美女-百度| 欧美aⅴ99久久黑人专区| 国产精品23p| 黄色观看网站| 岛国毛片在线播放| 欧美一区亚洲一区| 日本午夜一区二区| 五月婷婷综合在线观看| 第五色婷婷| av五月婷婷| 99国产精品自拍| 天天上天天干| 亚洲精品一卡二卡| 91精品大片| 久久亚洲天堂| 久久22| 三级特黄| 毛片9| 国产美女被草| 亚洲午夜电影在线观看| 日本黄色高清视频| 青娱乐av| 国产色av| 成人听书哪个软件好| 三级在线免费| 激情91视频| 中文字幕22页| 少妇性视频| 91手机在线视频| 欧美脚交| 欧洲av无码放荡人妇网站| 亚洲欧洲免费| 波多野结衣三级视频| 亚洲女人天堂色在线7777| 国产女女| 国产精品jizz在线观看老狼| 亚洲欧洲免费| 午夜电影av| 久久密桃| 夜夜夜爽| 九九热免费在线| 亚洲伦理在线播放| 欧美午夜久久久| 久久精品99国产精| 午夜爽视频| 黄色网www| 亚洲狼人天堂| 午夜一级电影| 女人囗交吞精囗述| 农村少妇久久久久久久| 国产精品精东影业| 精品亚洲乱码一区二区| 操操操插插插| 伊人超碰| av手机版| 免费播放片大片| 永久免费成人代码| 日韩日韩日韩日韩日韩| 色婷婷综合久久久久| 欧美色大人视频| 日本美女影院| 浴室里强摁做开腿呻吟男男| 少妇一边呻吟一边说使劲视频| 激情五月视频| 老头巨大又粗又长xxxxx| 在线看片资源| 美女污污网站| 成人av网址大全| 18+视频在线观看| 欧美一级三级| 国产伊人久久| 久久黄色影视| 狠狠操天天操| 天天碰视频| 麻豆911| 欧美一区二| 中字幕一区二区三区乱码| 国产中文字幕亚洲| av日韩中文字幕| 黄色成人91| 九九精品免费视频| 五月婷婷综合激情| 日本h视频在线观看| 日本成人中文字幕| 91精品推荐| 免费黄色国产视频| 爱的色放在线| 成人三级黄色片| 欧美999| 青娱乐最新视频| 国产91综合一区在线观看| 午夜天堂精品| 日韩一区二区三区免费视频| 狠狠操天天操| 欧美日韩毛片| 亚洲作爱网| 先锋av资源网站| 岛国毛片在线播放| 九色中文字幕| y蒂针刺h调教宫交| 国产二区视频| 天天色综合色| 中文福利在线| www.com黄色片| 亚洲交性网| 中文日韩字幕| 浴室里强摁做开腿呻吟男男| 久久久久久无码精品大片| 中文一区在线| 粉嫩一区| 国产欧美一区二区在线| 一道本无吗一区| 国产欧美综合一区二区三区| 免费h在线| 深夜福利国产精品| 天天操天天插天天射| 国产野模私拍在线视频| 毛片在线免费观看网址| 中文字幕免费看| 神马午夜伦理| 国产xxxx孕妇| 国产绿帽一区二区三区| av丝袜在线| caoprom在线视频| 亚洲第一成网站| 最新免费av| 亚洲视频黄| 综合久久激情| 夜夜夜夜夜操| 你懂的福利视频| a天堂在线视频| 国产激情无码一区二区| 精品欧美一区二区三区在线观看| av成人国产| 国产精品久久中文字幕| 17c在线| 开心色婷婷| 亚洲精品高潮| 国产图片区| av成人毛片| 午夜精品一区二区三区视频| 国产精品视频麻豆| 香蕉狠狠爱视频| 成人录像| 亚洲黄色图| 中文字幕第88页| 久久成人视屏| 亚欧中文字幕| 九色porny自拍视频| 国产真实乱| 日日操夜夜摸| 18一20亚洲gay无套男男| 日本在线观看| 欧洲亚洲激情| 日本东京热一区二区| 动漫3d精品一区二区三区乱码| 日本娇小侵犯hd| a级片在线观看| 日本色悠悠| 亚洲第一偷拍| 成人三级黄色片| 亚洲成人生活片| 欧美比基尼| 日韩av在线导航| 日本老妇高潮乱hd| 成年人看的免费视频| 超碰成人在线观看| 亚洲女人天堂色在线7777| 免费观看国产精品| 91九色视频在线| 伊人手机在线视频| 久久tv| 国产片自拍| 国产亚洲av在线| 91高跟黑色丝袜呻吟在线观看| 91成人免费在线观看| 吊侵犯の奶水授乳羞羞漫画| 公车上的奶水| 大肉大捧一进一出视频| 日韩黄色在线| 国产精品视频免费在线| 亚洲综合一区在线观看| 国产黑丝视频| 日本aa大片| 欧美激情国产精品日韩| 久久神马影院| 国产美女黄| 欧美一区二区成人| 国产99久久久国产精品免费看| 五月伊人网| 日韩一区在线免费观看| 性少妇videosexfreexxx片| 成人免费黄色| 福利av在线| 成人黄色电影在线观看| 一级片免费网址| 初尝人妻少妇中文字幕| 黄色福利片| 国产二区视频| 国产精品永久在线| 初尝人妻少妇中文字幕| 日本在线免费播放| 国产精品久久久一区二区 | 久久精品综合视频| 中文字幕av日韩精品| 日韩黄色免费电影| 欧美多p| 日本极品少妇视频| 丁香免费视频| 久久这里只有精品国产| 免费观看av网站| 青春草免费视频| sm国产在线调教视频| 天天干夜夜添| 日本黄色免费网址| 男生吃女生的胸视频| 国产精品久久亚洲| 午夜无遮挡| 成人毛片视频网站| 男人资源站| 久久久久久久| 国产精品无码在线播放| 成人免费视频网址| 欧美日韩国产在线一区| 欧洲一区二区三区在线| 午夜无遮挡| 黄片毛片在线看| 亚洲精品久久久乳夜夜欧美| 福利一区二区在线| www日韩| 性的免费视频| 免费伊人网| 人人超碰在线| 91中出| 国内精品视频在线观看| 黑人精品欧美一区二区蜜桃| 日本美女交配| 蜜臀久久99精品久久久| 四虎在线观看视频| 六月丁香婷婷综合| 热99在线| 97精品国产97久久久久久春色| 在线观看免费91| 免费观看a级片| 裸体免费看| 波多野结衣vs黑人巨大| 欧美v日本| 高h大肚孕期孕妇play| 中文字幕在线播放第一页| 私人影院毛片| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区精品| 久久精品免费一区二区| 高潮毛片无遮挡| 锕锕锕锕锕锕锕锕| 久久久久久久性| 青春草免费视频| www天堂网| 亚洲视频观看| 日韩伦理一区二区| 禁片天堂| 欧美一级片网址| 免费看a的网站| 一本在线免费视频| 亚洲黄色第一页| 在线观看中文字幕码| av毛片| 成年人在线免费观看| 国产精品免费福利| 久久精品免费电影| 美女福利视频| 农村妇女愉情三级| 麻豆视频传媒| 人人超碰在线| 青娱乐国产视频| 欧美岛国片| 男生插女生的网站| 亚洲影视精品| 女人被狂躁的高潮免费视频| av免费高清| 四虎影成人精品a片| 精品人伦一区二区三区蜜桃免费| 激情久久视频| 久草久草视频| 人人干干| 骚虎视频最新网址| 女生被男生猛操| av2014天堂网| av2014天堂网| 激情深爱五月| 欧美xxxxx少妇| 欧美激情18| 丰满孕妇性春猛交xx大陆| 国产 日韩 欧美 成人| 欧美a视频在线| 中文字幕第88页| 在线观看v片| 黄视频免费| 在线看片你懂的| 中文字幕自拍| 亚洲成人偷拍| 操操操干干干| 羞耻调教憋尿(高h,1v1)| 日韩欧美精品久久| 中文字幕第一页在线视频| 超级碰碰97| 国产精品黄色大片| 在线播放 日韩| 玖玖精品在线视频| 免费观看a级片| 青青草原av在线| 美女的胸给男人玩视频| 激情午夜天| 欧美比基尼| 九九精品免费视频| 亚洲国产婷婷香蕉久久久久久99| 男女交性视频| 麻豆一级片| av色小说| 懂色av蜜臀av粉嫩av分享吧最新章节| 国产一区成人| 色老头在线一区二区三区| 国产视频一二三区| aaa视频| 亚洲制服一区| 91正在播放| www.精品在线| 神马午夜av| 成人手机av| 精品资源在线| 久久精彩免费视频| 五月天在线| 69视频网站| 免费在线观看中文字幕| 国产二区视频| 伊人久久影院| 免费国产黄色网址| 91在线观看免费高清| av网站在线免费播放| a级在线视频| www.成人| 欧美成综合| 97影院| 色四月| 欧美成人精品一区二区男人小说 | 天堂8在线天堂资源bt| 日本色片网站| 欧美精品色| 日韩精品卡通动漫网站| 字母圈调教室| 三级特黄| 国产做爰xxxⅹ久久久精华液| 久久久精品视| 色av综合在线| 色天使亚洲| 亚洲高清在线观看视频| 丰满人妻老熟妇伦人精品| 国产一区二区网| 国产精品久久久一区二区| 国产精品久久久一区| 国产一在线| 天堂中文网| 91久色蝌蚪| 日韩人体视频| 青青草草视频| 人妖一区二区三区| 欧美挤奶吃奶水xxxxx| 绝母1第6集免费观看动漫| 综合激情av| 国产激情片| 四虎精品在永久在线观看| 亚洲一级电影| 精品资源在线| 啪啪中文字幕| 国产精品久久中文字幕| 国产精品入口夜色视频大尺度| 国产男男gay体育生网站| 国产一区二区波多野结衣| 91桃色污| 亚洲福利在线视频| 伊人久久综合影院| 91香草视频| 国产精品大全| 26uuu亚洲国产精品| 在线观看免费一区| 日本精品免费一区二区三区 | 自拍视频网站| 亚洲dvd| 欧美大片18| av片不卡| 精品国产乱码久久久久久蜜柚| 99精品国产成人一区二区| 97精品国产露脸对白| 久久怡春院| 国产乱淫av片免费看| 911国产精品| 无码精品久久久久久久| 97精品国产97久久久久久粉红| 视频在线国产| 日韩一区不卡| 天堂在线中文资源| 丰满熟妇被猛烈进入高清片| 成人免费毛片aaaaaa片| 亚洲瘦老头同性xxxxx| 亚洲你我色| 骚虎视频最新网址| 久久99精品久久久久| 四级黄色片| 奇米网一区二区三区| 少妇人妻丰满做爰xxx| 久久综合国产| 欧美成人精品一区二区男人看| 少妇搡bbbb搡bbb搡打电话| 琪琪综合| 黄色大片在线播放| 狠狠撸在线| www.在线观看麻豆| 麻豆导航| 精品国产av 无码一区二区三区| 亚洲日本韩国| 亚洲欧美日韩久久| 国产美女黄| 欧洲av无码放荡人妇网站| 在线亚洲综合| 香蕉一级片| 美日韩久久| 伊人网大香| 亚洲伊人精品酒店| 国内激情视频| 国产精品区一区二区三| 美女隐私无遮挡| 久久这里只有精品8| 好男人在线视频| 亚洲成人免费在线| 中文福利在线| 久久亚洲精品无码va白人极品| 久久视频亚洲| 妹妹窝人体色| 成年人看的免费视频| 日本久操视频| 国产精品视频看看| 国产911在线观看| 一边摸一边抽搐一进一出视频| 亚洲欧美日韩国产成人精品影院| 亚洲成人精品在线播放| 日日日操| 在线精品一区二区| av五月婷婷| 91丨porny丨成人蝌蚪| 少妇做爰xxxⅹ性视频| 欧美精品1区2区3区| 青青伊人国产| 青娱乐激情| 三级福利片| 羞羞在线观看| 无遮挡aaaaa大片免费看| 日本久久一级片| 性一交一乱一伧国产女士spa| 精品一区不卡| 午夜操一操| 乱子伦视频在线看| 欧美阿姨| av资源中文字幕| 中国大陆一级片| 91福利视频网| 极品粉嫩小仙女高潮喷水久久| 亚洲va中文字幕无码毛片| 国产精品视频网站| 少妇视频网| 国产一级久久| 97在线公开视频| 日韩一区二区免费在线观看| 中日韩免费视频| 日本不卡一区视频| 国产精选av| h小视频| 久久99精品久久久久久国产越南| 黄色一级片免费| 宅男噜噜噜666在线观看| 欧美影院在线观看| 大尺码肥胖女系列av| 国产 日韩 欧美 成人| 成人动漫影音先锋| 黄色网www| 69视频网| 日本污网站| 97国产超碰| 久久人体视频| 97超在线| 久久久精品91| 色97色| 成人免费短视频| 大尺度床戏视频| 337p色噜噜| 91免费成人| 国产精品国产对白熟妇| 欧美特级a| 亚洲aⅴ网站| 日韩最新视频| 欧美日韩国产在线一区| 熟女av一区二区三区| 99国产精品久久久久久久久久久| 9999久久久久| 久久国产精品久久| 我和岳交换夫妇爽4p晓娟小说| 亚洲人成中文字幕在线观看| 久久神马影院| 国产一区二区久久精品| 古代玷污糟蹋np高辣h文| 高清欧美性猛交xxxx| 爽好大快深点视频网站| 久久网站免费观看| 日本真人做爰免费视频120秒| 亚洲色图36p| 看黄色网址| 成人午夜免费福利视频| 欧美在线aa| 国产黄色一级片| 亚洲熟妇无码乱子av电影 | 六月丁香婷婷综合| 国产 日韩 欧美 成人| 国产丝袜在线视频| 日本欧美激情| 妹子干综合| 久久精品国产一区二区三区不卡| 欧洲亚洲激情| 精品自拍av| 自拍三区| 成年人在线免费| 国产女女做受ⅹxx高潮| 蜜桃综合网| 久草热在线观看| www黄色| 啪啪免费网| 欧美高清视频一区| 91毛片视频| 日本免费电影一区二区三区| 蜜臀成人av| 暖暖日本视频| 92精品视频| 午夜视频www| 日韩色一区| 人人妻人人爽人人澡人人精品| 青娱乐极品美女| 未满十八岁勿进| 偷拍视频网| 人妻少妇精品无码专区| 国产激情视频一区二区三区| a v视频在线播放| 免费看的黄色| 最新日韩一区| 亚洲精品合集| 日韩中文字幕在线观看视频| 性生活毛片| 久操色| 亚洲无吗一区二区三区| 999久久久久| 色一区二区三区| 丰满少妇又紧又爽又粗| 欧美中文字幕一区二区| 日韩在线视频网站| 牛牛碰在线| 本道久久| 少妇一级淫免费放| 亚洲女优在线播放| 1000部夫妻午夜免费| 黄色片网战| 亚洲色图导航| 特黄特色大片免费视频大全| 日韩一二区| 亚洲精品tv| 久久久av免费| 最新国产露脸在线观看| 欧美日韩一区二区三区在线| 国产伦精品一区二区三区88av| 香蕉久久夜色精品国产| 一区二区韩国| 91夫妻视频| 777久久久| 亚洲素人av| 欲色影音| 亚洲另类色综合网站| 无码gogo大胆啪啪艺术| 雪白的扔子视频大全在线观看| 国产人与禽zoz0性伦| 深爱激情久久| 亚洲黄色一区| 大尺码肥胖女系列av| 美女裸体跪姿扒开屁股无内裤| 日本人妻换人妻毛片| 97在线观看| kk视频在线观看| 青青草原av在线| 香蕉视频在线下载| 国产十八熟妇av成人一区| 国偷自产av一区二区三区 | 美女网站视频在线观看| 91丨九色丨丰满| 成人午夜免费福利视频| 日韩一二区| 蜜桃av在线| 骚视频在线观看| 天天躁日日躁狠狠躁欧美| 88av在线| 91免费成人| 九九自拍偷拍| 日本美女爱爱视频| 国产色影院| 成年人黄色免费网站| 亚洲午夜免费电影| 大香依人| 香蕉尹人网| 天天天综合网| 欧美三级在线| 国产精品午夜在线观看| 大肉大捧一进一出视频| 999精品网站| 成人中文字幕+乱码+中文字幕| 天天人人| 国产粉嫩在线| 可以看的av| 亚洲国产精品视频| 欧美在线不卡视频| 草莓视频黄在线观看| 亚洲免费不卡| 一级片一级片| 国产精品免费福利| 成人欧美一区二区三区黑人孕妇| 欧美一区二区三区在线观看视频| 黄色一级片黄色一级片| 亚洲影视一区二区| 色99999| 男女一进一出视频| 欧美成人a交片免费看| 小辣椒导航| 少妇紧身牛仔裤裤啪啪| 中文字幕高清在线播放| 97精品国产97久久久久久春色| 91福利影院| 亚洲一区二区三区在线看| 91网站在线播放| 精品午夜久久| 久久精品一本| 冲田杏梨 在线| 精品国产免费一区二区三区| 青娱乐国产视频| 丁香视频| 天天综合天天做天天综合| 欧美激情在线播放| 色综合久久久久| 爆操巨乳美女| 国产小视频自拍| 国产真实伦对白全集| 五月婷网站| 竹菊影视一区二区三区| 色四月| 96精品在线| 3d动漫精品啪啪一区二区竹菊| 成人免费视频视频| 青青青草国产| 欧美日韩国产传媒| 欧美群妇大交群中文字幕| 国产一区二区三区在线免费观看| 熟女性饥渴一区二区三区| 亚洲美女视频一区| 日韩视频专区| 黄色成人在线视频| 久久久亚洲一区| 日本不卡一区视频| 日本一本久草| 九色中文字幕| 国产熟女一区二区| 翁虹三级电影| www.成人| 亚洲一二三四在线| 男女爽爽爽| 青草一区二区| 五月丁香六月激情综合在线视频| 国产黄色录像片| 青娱乐av| 亚洲啊啊| 欧美专区综合| 亚洲香蕉网站| 沈樵精品国产成av片| 最近2018年手机中文字幕版 | 日本a天堂| 免费观看国产精品| www.av网| 欧美a级黄色| 亚洲综合色婷婷| 久久福利视频网| 欧美丰满bbw| 99久久精品免费看国产交换| 国产女厕一区二区三区在线视| 伊人中文在线| 91麻豆产精品久久久久久夏晴子| 免费黄色激情视频| 老妇裸体性猛交视频| av四虎影院| 在线观看国产亚洲| 在线观看的av网站| 欧美激情综合在线| 四虎8848在线精品观看| 欧美激情3p| 免费操人视频| 免费成人在线观看视频| 一区二区视频在线播放| 91免费版黄| 深爱综合网| 99久久精品免费看国产交换| 久久久免费av| 91久久爽久久爽爽久久片| 免费看日批视频| 色婷婷国产精品综合在线观看| 欧美a级成人淫片免费看| 91社区在线观看| 欧美一区亚洲一区| av黄色在线| 北条麻妃99精品青青久久| 天天人人综合| 国内三级在线| 在线免费观看一区二区| 国产 欧美 日韩| 国产精品xxx| 日韩作爱视频| 97黄网| 暖暖日本视频| 亚洲一区二区自拍| 亚洲第一淫片| www.天天操.com| 国产成人av在线| 欧美群妇大交群中文字幕| 国产理伦| 手机免费看av| 99看片| 久久无码高潮喷水| 狠狠爱av| www黄色在线观看| www.色婷婷| 免费视频成人| 久久久久久自慰出白浆| 亚洲中文字幕一区二区| ts人妖在线| 92看片淫黄大片欧美看国产片| 一级全黄少妇性色生活片| 亚洲国产成人在线播放| 亚洲日本激情| 亚洲国产无线乱码在线观看| 成人小视频在线观看| 国产v日产∨综合v精品视频| 久久精品天天中文字幕人妻| 亚洲爱情岛论坛永久| 欧美色就是色| tube日本69第一次| 影音先锋成人| 和美女啪啪| 精品九九久久| 青娱乐极品美女| 欧美伦理片| 日本成人黄色片| 精品午夜久久| 贵族女沦为官妓h呻吟| 在线观看污污网站| free×性护士医生videos猛烈| 日韩伊人| 亚洲欧美另类日本 | 一区二区三区动漫| 欧美日韩在线不卡| 欧美69久成人做爰视频| sm久久捆绑调教精品一区| 成人高清一区| 久久新网址| 精品999久久久| 你懂的福利视频| 久久黄色影视| 理论片av| 国产九色av| 亚洲偷偷自拍| 中文字幕一区二区三区精彩视频| 久久综合伊人77777麻豆| 欧美一区亚洲| 国产亚洲av在线| 一区二区蜜桃| 最新视频 - 8mav| 性做爰裸体按摩视频| 国产在线综合视频| 五月精品视频| 91国产在线播放| 国产精品久久毛片av大全日韩| 亚洲一区二区在线看| 日本一二三不卡视频| 91手机在线视频| 三级欧美在线| 亚洲色图网友自拍| 性少妇无码播放| 在线不卡| 少妇紧身牛仔裤裤啪啪| 天天操天天射综合网| 蜜桃成人无码区免费视频网站| 久久久国产高清| 中国极品少妇xxxxx| av在线激情| 中文字幕天堂网| 亚洲成人18| 亚洲国产成人精品久久| 久久婷婷五月综合| 色撸撸在线| 国产精品午夜福利| 精品亚洲成人| 久久99一区| 欧美成人高潮一二区在线看| 精品国产乱码久久久久久蜜柚| 人妻久久一区二区三区| 摸bbb搡bbb搡bbbb| 白嫩白嫩国产精品| 在线观看v片| 成人手机av| 字母圈调教室| 亚洲一区精品视频| 爱福利视频网| 人妻少妇精品无码专区| 成人录像| 日本不卡不卡| 亚洲理论电影在线观看| 黄色18网站| 麻豆精品在线| av漫画在线| 亚洲国产导航| 免费视频99| 国产精品永久在线| 日本女人hd| av小说免费在线观看| 亚洲毛片儿| 亚洲AV成人无码久久| 欧美日韩91| 少妇人妻丰满做爰xxx| 国产亚洲精品一区二区三区| 亚洲精品视频免费观看| 久久色电影| 五月天在线| 91视频黄色| 成人午夜激情网| 亚洲第一偷拍| 久久国内| 欧美精品国产一区二区| 69视频网站| 无色福利| 亚洲av久久久噜噜噜噜| 91一区二区三区| 少妇一级淫免费放| 高h大肚孕期孕妇play| 国产精品av在线播放| 黄色伊人| 99看片| www.天天操.com| 97人人射| 欧美视频第一页| 成 人片 黄 色 大 片| 性欧美lx╳lx╳| 国产亚洲精久久久久久无码77777 欧美成人精品欧美一 | 国产91在线 | 亚洲| 成人亚洲网| 绿帽女王羞辱丨vk| 国产女女| 自拍 中文字幕| 日韩视频在线视频| 一本色道久久综合亚洲精品小说| 中文字幕在线第一页| 欧美丰满熟妇bbbbbb百度| 高清中文字幕av| 日本妇乱大交xxxxx| 巨人精品福利官方导航| 久久久一二三区| 国产乱淫视频| 性高跟鞋xxxxhd人妖| 久久精品免费电影| 九九热99久久久国产盗摄| 老司机青青草| 尤物在线网站| 美女污污网站| av日韩中文| 黄色成人免费在线| 亚洲精品码| 日本免费色| 久久精品国产亚洲AV无码麻豆| 懂色av.com| 天天爽天天摸| 97超碰免费在线观看| xxx性视频| 久久com| 91成人免费在线观看| 午夜视频www| 国产成人aaa| 亚洲毛片儿| 3d动漫精品啪啪一区二区竹菊| 本道久久| 日韩激情视频在线| 奇米亚洲| 国产精品不卡在线观看| 久久看毛片| 九九九九精品| 日本久久激情| 在线观看的av网站| 黄视频免费在线看| 久久爱影视| 丰满孕妇性春猛交xx大陆| 妹妹窝人体色| 亚洲午夜电影在线观看| 3p视频在线播放| 神马午夜av| 成人国产精品久久久| 色悠悠在线视频| 麻豆911| 99热伊人| 99日精品| 亚洲最新视频| 久久韩日| 大j8福利视频导航|